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1. PU Learning and its sources
Section 7.1 in the survey paper
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General idea

1
Identify reliable negative 

(and positive) examples

2
Train a classifier using 

(semi-)supervised techniques

3
Select the best classifier
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Combinations of steps in literature



Step 1: identifying reliable negative examples

Based on smoothness assumption

• Use distance metric directly, or
• Train non-traditional classifier and use those probabilities for the 

distance

• Additional problem: what is far enough?
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[1] Yu et al. PEBL: Positive Example Based Learning for Web Page Classification Using SVM. KDD. 2002
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Step 1: Non-traditional classifier
Non-traditional classifier predicts Pr($ = 1|()
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1. Train 
non-traditional 
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2. reliable negative 
examples
=
examples with low 
probabilities
Pr($ = 1|()

[1] Liu et al. Partially supervised classification of text documents. ICML. 2002
[2] Liu et al. Building text classifiers using positive and unlabeled examples. ICDM. 2003
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[1] Liu et al. Partially supervised classification of text documents. ICML. 2002
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Step 2: training a classifier

• Any (semi-)supervised method can be used

• Popular choices:
• SVM because of linear separability
• Anything that is a good choice for the specific application
• Add EM to make anything semi-supervised

• Some custom methods were developped for this setting
• Iterative SVM



Step 2: Iterative SVM



Step 3: selecting a classifier

• Last iteration
• Recall [1] 
• PU version of !+ score [2]

"' =
2%&
% + &

!+ high when " and # are high à same goal for !+1

"'( =
%&

Pr(, = 1) =
&)

Pr(3, = 1)

[1] Li & Liu. Learning to classify texts using positive and unlabeled data. IJCAI. 2003
[2] Li & Liu. Learning from positive and unlabeled examples with different data distributions. ECML. 2005
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