Learning from positive and
unlabeled data

An introductory tutorial



4. Two-step techniques

Section 5.1 in the survey paper
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Table 4 Two-step techniques

Combinations of steps in literature

Method Step 1 Step 2 Step 3
S-EM Liu et al. (2002) Spy EM NB AE
Roc-SVM Li and Liu (2003) Rocchio Iterative SVM FNR > 5%
Roc-Clu-SVM Li and Liu (2003) Rocchio® Iterative SVM FNR > 5%
PEBL Yu et al. (2002); Yu et al. (2004) 1-DNF Iterative SVM Last
A-EM Li and Liu (2005) Augmented Negatives EM NB AF

LGN Li et al. (2007) Single Negative BN /

PE_PUC Yu and Li (2007) PE (EM) NB Unspecified
WVC/PSOC Peng et al. (2007) 1-DNF* Iterative SVM Vote
CR-SVM Li et al. (2010) Rocchio® SVM /

MCLS Chaudhari and Shevade (2012) k-means Iterative LS-SVM Last
C-CRNE Liu and Peng (2014) C-CRNE TFIPNDF /

Pulce Ienco and Pensa (2016) DILCA DILCA-KNN /

PGPU He et al. (2018) PGPU Biased SVM /




Step 1: identifying reliable negative examples

Based on smoothness assumption

«;/\D?
* Use distance metric directly, or

* Train non-traditional classifier and use those probabilities for the
distance P (s=Al 2D

* Additional problem: what is far enough?
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[1] Yu et al. PEBL: Positive Example Based Learning for Web Page Classification Using SVM. KDD. 2002
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Step 1: Non-traditional classifier

Non-traditional classifier predicts Pr(s = 1|x)
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[1] Liu et al. Partially supervised classification of text documents. ICML. 2002
[2] Liu et al. Building text classifiers using positive and unlabeled examples. ICDM. 2003
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Step 1: Spy
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Step 2: training a classifier

Any (semi-)supervised method can be used
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Step 2: Iterative SVM
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[1] Liu et al. Partially supervised classification of text documents. ICML. 2002



Step 3: selecting a classifier

e Last iteration XX B

[1] Li & Liu. Learning to classify texts using positive and unlabeled data. IJCAI. 2003
[2] Li & Liu. Learning from positive and unlabeled examples with different data distributions. ECML. 2005
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[1] Li & Liu. Learning to classify texts using positive and unlabeled data. IJCAI. 2003
[2] Li & Liu. Learning from positive and unlabeled examples with different data distributions. ECML. 2005
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[1] Li & Liu. Learning to classify texts using positive and unlabeled data. IJCAI. 2003
[2] Li & Liu. Learning from positive and unlabeled examples with different data distributions. ECML. 2005







