Learning from positive and unlabeled data

An introductory tutorial

4. Two-step techniques

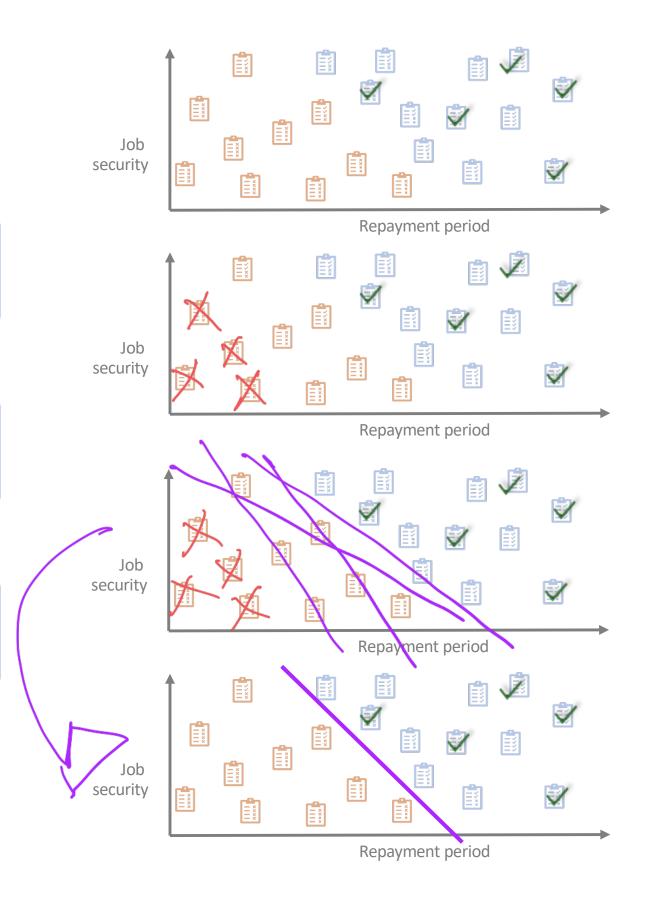
Section 5.1 in the survey paper

General idea

Identify reliable negative (and positive) examples

Train a classifier using (semi-)supervised techniques

Select the best classifier



3

Combinations of steps in literature

Table 4 Two-step techniques

Method	Step 1	Step 2	Step 3
S-EM Liu et al. (2002)	Spy	EM NB	ΔΕ
Roc-SVM Li and Liu (2003)	Rocchio	Iterative SVM	FNR > 5%
Roc-Clu-SVM Li and Liu (2003)	Rocchio*	Iterative SVM	FNR > 5%
PEBL Yu et al. (2002); Yu et al. (2004)	1-DNF	Iterative SVM	Last
A-EM Li and Liu (2005)	Augmented Negatives	EM NB	ΔF
LGN Li et al. (2007)	Single Negative	BN	/
PE_PUC Yu and Li (2007)	PE	(EM) NB	Unspecified
WVC/PSOC Peng et al. (2007)	1-DNF*	Iterative SVM	Vote
CR-SVM Li et al. (2010)	Rocchio*	SVM	1
MCLS Chaudhari and Shevade (2012)	k-means	Iterative LS-SVM	Last
C-CRNE Liu and Peng (2014)	C-CRNE	TFIPNDF	/
Pulce Ienco and Pensa (2016)	DILCA	DILCA-KNN	1
PGPU He et al. (2018)	PGPU	Biased SVM	1

Step 1: identifying reliable negative examples

TF-IDF

Based on smoothness assumption

- Use distance metric directly, or
- Train non-traditional classifier and use those probabilities for the distance $\mathcal{P}_{C}(\leq = 1, \infty)$

Additional problem: what is far enough?

Step 1: 1-DNF

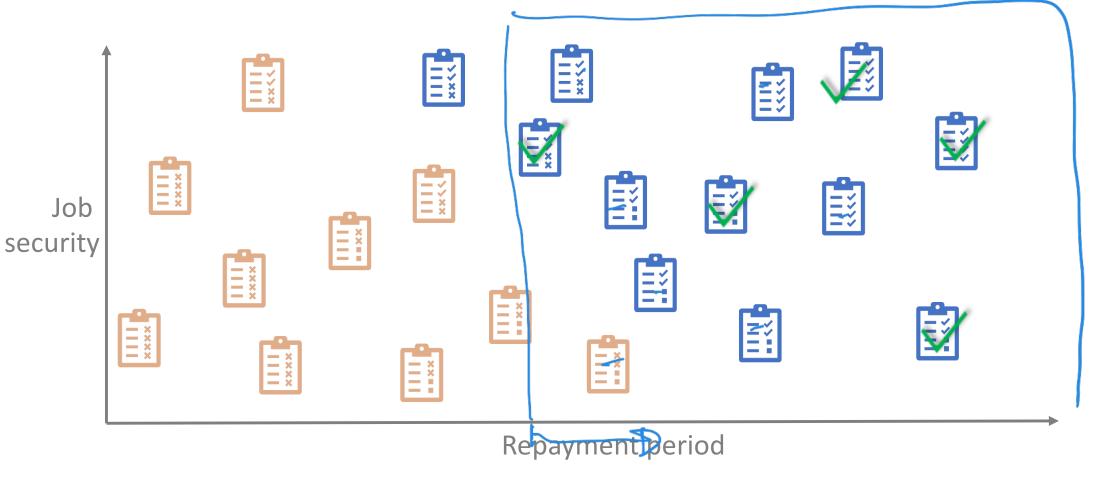
Repayment period

5/5 L 4/18U-

Step 1: 1-DNF

- Find strong positive features
- examples
 =
 examples without
 strong positive
 features

reliable negative

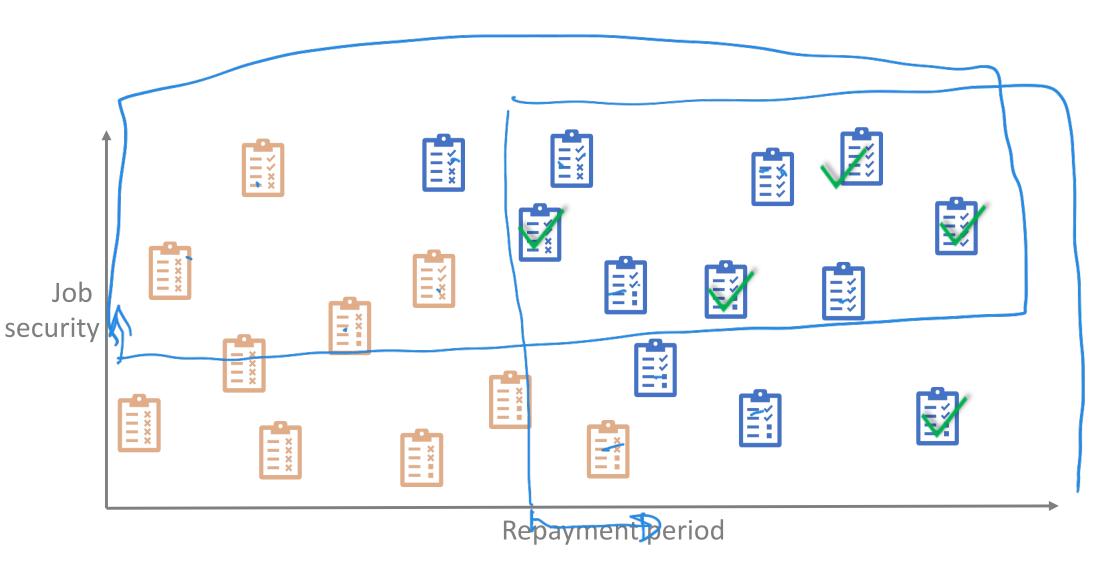


[1] Yu et al. PEBL: Positive Example Based Learning for Web Page Classification Using SVM. KDD. 2002

Step 1: 1-DNF

9/18U 5/5 L 9/18U 4/18U-

- 1. Find strong positive features
- 2. reliable negative examples= examples without strong positive features

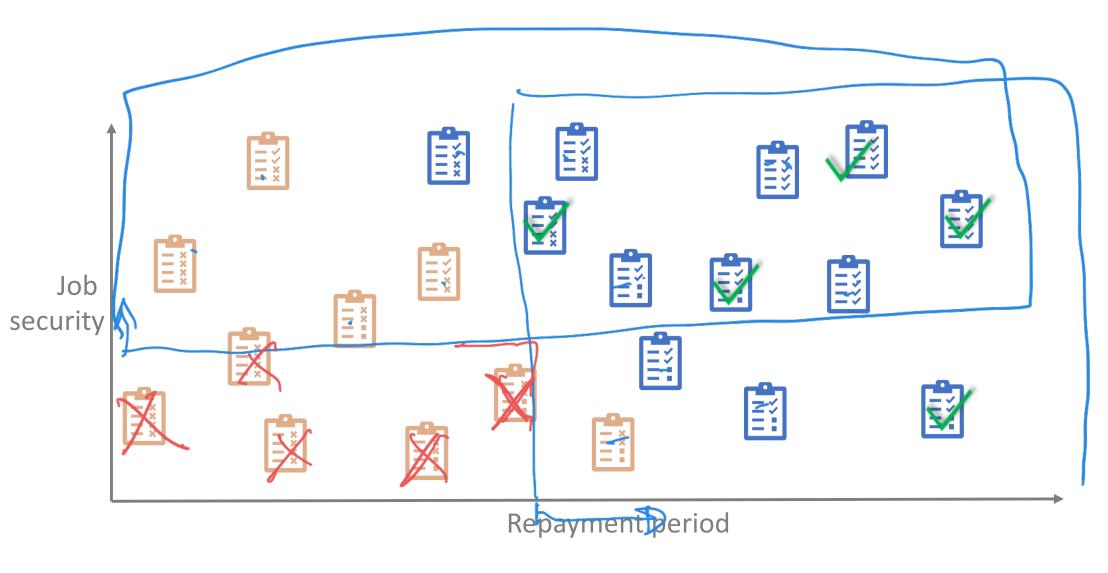


Step 1: 1-DNF

9/18U 5/5 L 9/18U 4/18U-

- 1. Find strong positive features
- 2. reliable negative examples=| examples withou

examples without strong positive features



Step 1: Non-traditional classifier

Non-traditional classifier predicts Pr(s = 1|x)

- Train
 non-traditional
 classifier
- reliable negative examples

=

examples with low probabilities

$$\Pr(s=1|x)$$

Repayment period

- [1] Liu et al. Partially supervised classification of text documents. ICML. 2002
- [2] Liu et al. Building text classifiers using positive and unlabeled examples. ICDM. 2003

Step 1: Non-traditional classifier

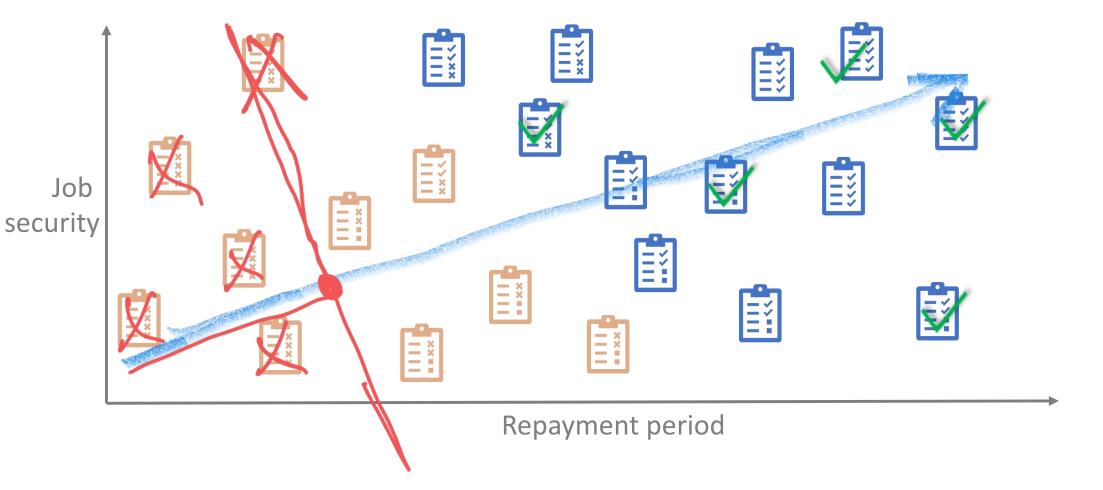
Non-traditional classifier predicts Pr(s = 1|x)

- Train
 non-traditional
 classifier
- reliable negative examples

=

examples with low probabilities

$$\Pr(s=1|x)$$

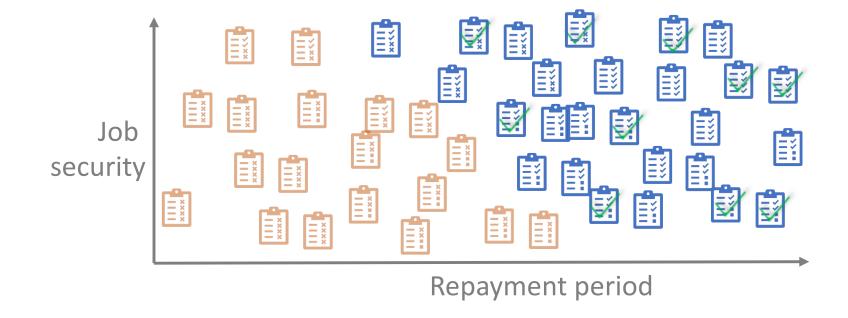


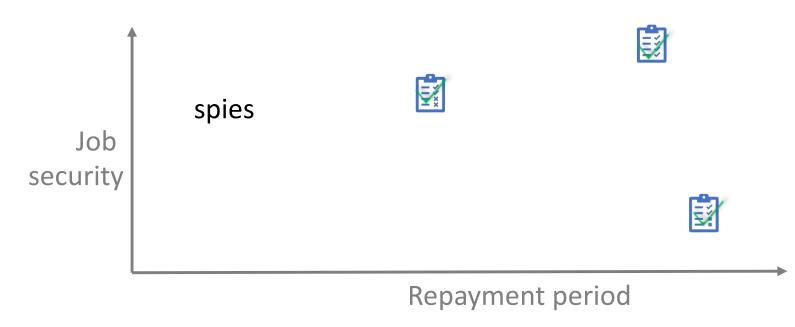
^[1] Liu et al. Partially supervised classification of text documents. ICML. 2002

^[2] Liu et al. Building text classifiers using positive and unlabeled examples. ICDM. 2003

- Keep set of labeled "spies" behind when training non-traditional classifier
- 2. reliable negative examples=examples with probabilitieslower than spy probabilities

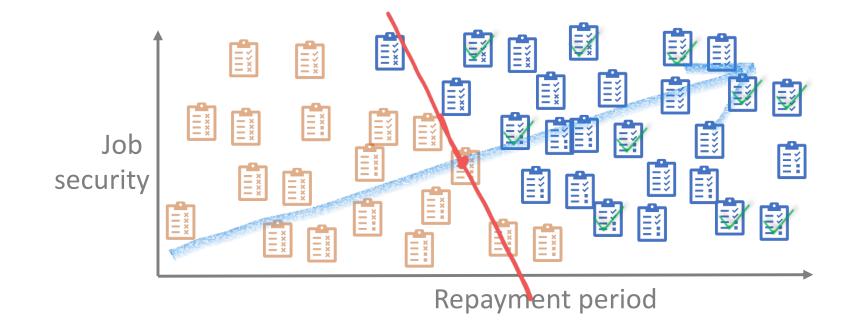
$$\Pr(s = 1 | x_{neg}) < \Pr(s = 1 | x_{spy})$$

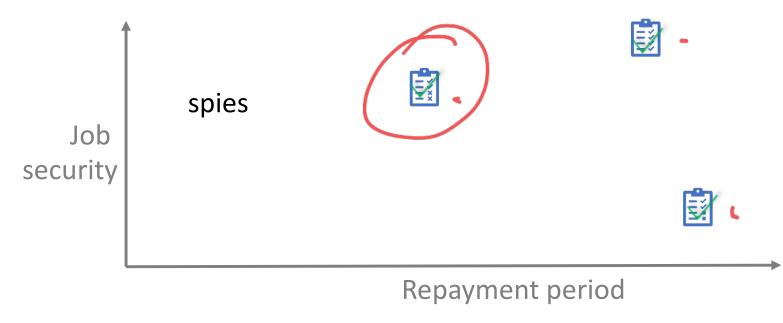




- Keep set of labeled "spies" behind when training non-traditional classifier
- 2. reliable negative examples=examples with probabilitieslower than spy probabilities

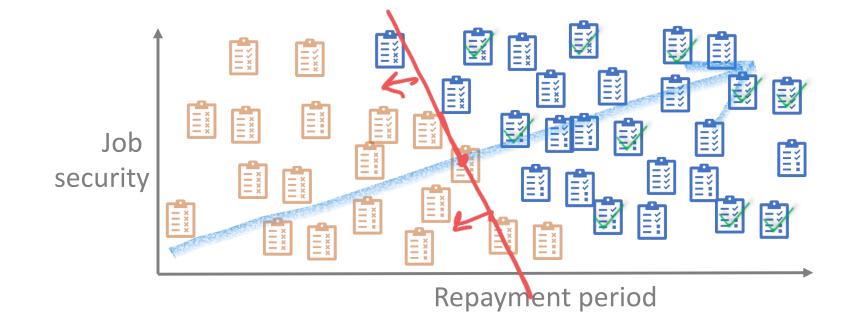
$$\Pr(s = 1 | x_{neg}) < \Pr(s = 1 | x_{spy})$$

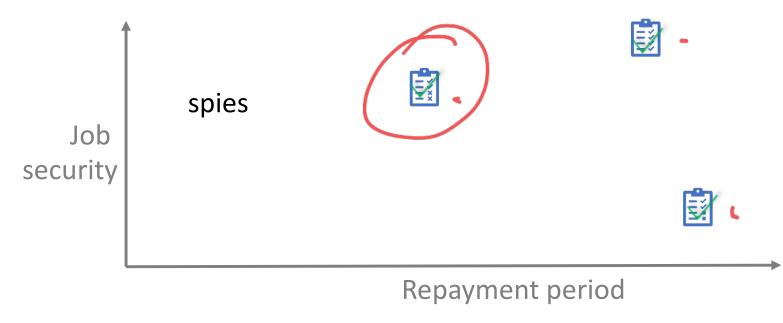




- Keep set of labeled "spies" behind when training non-traditional classifier
- 2. reliable negative examples=examples with probabilitieslower than spy probabilities

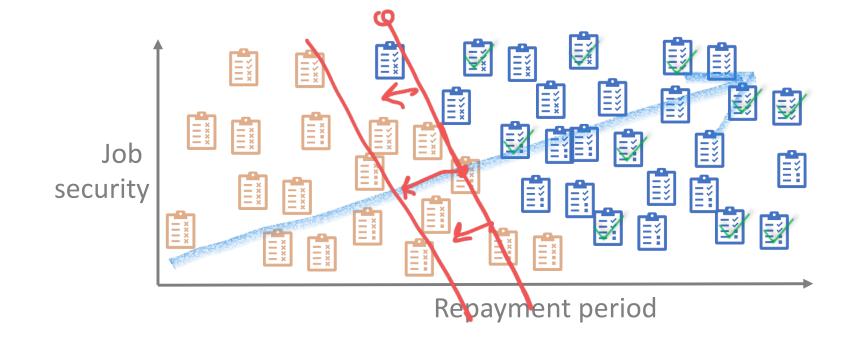
$$\Pr(s = 1 | x_{neg}) < \Pr(s = 1 | x_{spy})$$





- Keep set of labeled "spies" behind when training non-traditional classifier
- 2. reliable negative examples=examples with probabilitieslower than spy probabilities

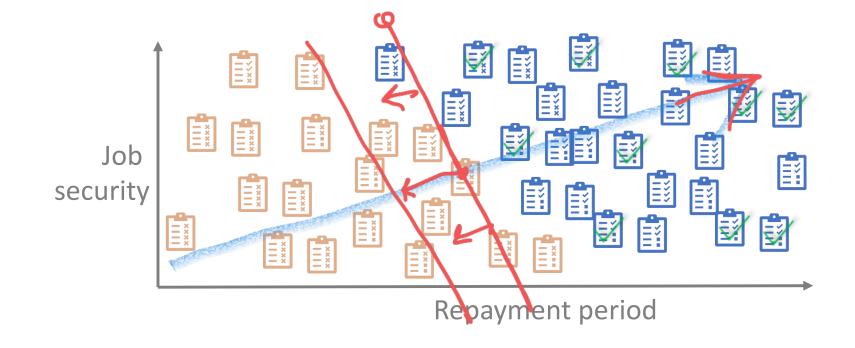
$$\Pr(s = 1 | x_{neg}) < \Pr(s = 1 | x_{spy})$$





- Keep set of labeled "spies" behind when training non-traditional classifier
- 2. reliable negative examples=examples with probabilitieslower than spy probabilities

$$\Pr(s = 1 | x_{neg}) < \Pr(s = 1 | x_{spy})$$



Step 2: training a classifier

Any (semi-)supervised method can be used

L'application-specific clamifier

EM

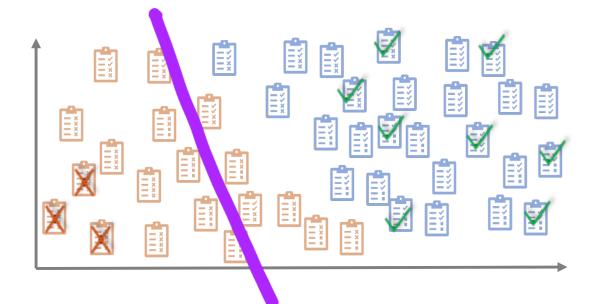
Valeled positive

Valiable negative

Valiable negat

iterative SVM

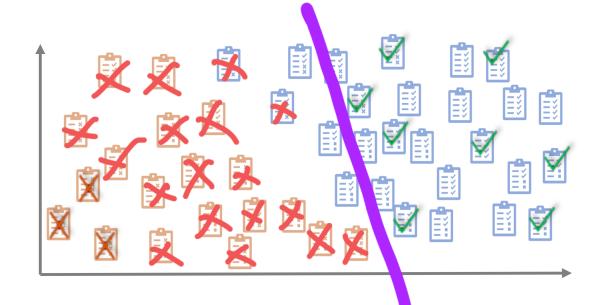
Step 2: Iterative SVM



[1] Liu et al. Partially supervised classification of text documents. ICML. 2002

Step 3: selecting a classifier

• Last iteration



Step 3: selecting a classifie

- Last iteration
- Recall [1] 5CAR

$$r = \Pr(\hat{y} = 1|y = 1) = \Pr(\hat{y} = 1|s = 1)$$

Step 3: selecting a classifie

- Last iteration
- Recall [1] 5CAR

$$r = \Pr(\hat{y} = 1|y = 1) = \Pr(\hat{y} = 1|s = 1)$$

$$F_1 = \frac{2pr}{p+r}$$

$$p = \Pr(y=1|\hat{y}=1)$$

 F_1 high when p and r are high \rightarrow same goal for F_1'

$$F_1' = \frac{pr}{\Pr(y=1)} = \frac{r^2}{\Pr(\hat{y}=1)}$$

- [1] Li & Liu. Learning to classify texts using positive and unlabeled data. IJCAI. 2003
- [2] Li & Liu. Learning from positive and unlabeled examples with different data distributions. ECML. 2005

DD MCXtooo