Learning from positive and unlabeled data

3. Assumptions to enable PU Learning

Section 3 in the survey paper

Assumptions in PU Learning

Not all the assumptions need to be strong individually, but together they need to be strong enough to enable learning.

Repayment period

Assumptions in PU Learning

Additional assumption are necessary to enable learning

- 1. Labeling mechanism assumptions
- 2. Data (class distribution) assumptions

Label mechanism assumptions

Section 3.1 in the survey paper

Every positive example has the same probability c to be labeled

$$e(x) = \Pr(s = 1 | x, y = 1)$$
$$= \Pr(s = 1 | y = 1)$$
$$= c$$

Enables reducing PU learning to binary classification by weighting the data or minor algorithm modifications

CAR) e labeled

Repayment period

Probability to be labeled directly proportional to positive probability Pr(s = 1|x) = c Pr(y = 1|x)

Non-traditional classifier predicts Pr(s = 1|x) can be learned from PU data using traditional techniques [1].

Interesting properties:

- Ranking order
- Recall
- Get class probabilities by dividing non-traditional classifier by c

[1] Elkan & Noto. Learning Classifiers from Only Positive and Unlabeled Data. KDD. 2008

SCAR: Ranking order

[1] Elkan & Noto. Learning Classifiers from Only Positive and Unlabeled Data. KDD. 2008

Non-traditional classifier predicts Pr(s = 1|x)

$Pr(s = 1|x_1) > Pr(s = 1|x_2)$ \mathbf{r} $Pr(y = 1|x_1) > Pr(y = 1|x_2)$

•

Training a non-traditional classifier subject to a recall is equivalent to training a traditional classifier subject to that same recall. SCAR: Recall Non-traditional classifier predicts Pr(s = 1|x)

 $Pr(\hat{y} = 1 | y = 1) = Pr(\hat{y} = 1 | s = 1)$

SCAR: Class probabilities

From

It follows directly

$$Pr(s = 1|x) = c Pr(y = 1|x)$$

$$y = 1|x = \frac{1}{c} Pr(s = 1|x)$$

$$y = \frac{1}{c} Pr(s = 1|x)$$

[1] Elkan & Noto. Learning Classifiers from Only Positive and Unlabeled Data. KDD. 2008

Non-traditional classifier predicts Pr(s = 1|x)

The ability to employ non-traditional classifiers is what makes the SCAR assumption so attractive and widely used

Selected At Random (SAR) (better name: selected conditionally at random)

Labeled examples are a biased sample from the positive distribution, where the bias completely depends on the attributes x [1]

$$e(x) = \Pr(s = 1 | x, y = 1)$$

Labeled examples are a biased sample from the positive distribution, where the bias completely depends on the attributes x [1]

Labeled examples are a biased sample from the positive distribution, where the bias completely depends on the attributes x [1]

Labeled examples are a biased sample from the positive distribution, where the bias completely depends on the attributes x [1]

Selected At Random (SAR)

Repayment period

Selected At Random (SAR)

If labeling mechanism is known, learning is possible.

Otherwise, additional assumptions are needed.

- class distribution -labeling mechanism -depends only on subset of x

Important field for future research!

Probabilistic Gap (type of SAR)

Positive examples that resemble negative examples are less likely to be labeled

$$e(x) = \Pr(s = 1 | x, y = 1)$$
$$= f(\Pr(y = 1 | x))$$

With $\frac{d}{dt}f(t) > 0$

Probabilistic Gap (type of SAR)

Repayment period

Probabilistic Gap (type of SAR)

Non-traditional classifier predicts Pr(s = 1|x) again useful!

Properties:

- Non-traditional classifier predicts positive \rightarrow reliable positive example

$$\Pr(s = 1|x) \ge 0.5 \Rightarrow \Pr(y = 1|x) \ge 0.5$$

Ranking order preserved

 $Pr(s = 1|x_1) > Pr(s = 1|x_2) \Leftrightarrow Pr(y = 1|x_1) > Pr(y = 1|x_2)$

[1] He et al. Instance-dependent pu learning by Bayesian optimal relabeling. 2020 [2] Bekker & Davis. Learning from positive and unlabeled data: a survey. MLj. 2020

Data assumptions

Section 3.2 in the survey paper

Negativity

Just ignore that it is PU data....

In combination with SCAR, not necessarily so bad

Only interested in most confident predictions? → Ranking order property

Interested in certain recall?

 \rightarrow Recall property

Good classifier [1,2]:

- 1. Classifies all labeled examples as positive
- 2. Classifies as few as possible examples as positive

[1] Liu et al. Partially supervised classification of text documents. ICML 2002

[2] Blanchard et al. Semi-supervised novelty detection. JMLR. 2010

Smoothness

Examples that are similar to each other are likely to have the same label

Useful for identifying reliable negative examples: examples that are not similar to any of the labeled positives

