Learning from positive and
unlabeled data



2. PU Learning definitions
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Learning from positive and unlabeled data
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In PU data: only a subset of the positive examples are labeled



Learning from positive and unlabeled data
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Now it is less clear what the decision boundary should be



Learning from positive and unlabeled data
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Learning from positive and unlabeled data
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Labeling mechanism

How are positive examples selected to be labeled?

e (X)) = R(s=aly=4,7)

Propensity score

[1] Bekker & Davis. Beyond the Selected Completely At Random Assumption for Learning from Positive and Unlabeled Data. ECML-PKDD. 2019
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Labeling mechanism e(x) = Pr(s = 1]y = 1,x)

The labeled distribution is a biased version of the positive distribution

— )
filx) = Pr(x|s = 1) ~ e(x)f; (x) P D (x | 4= A)

filx) = olx )f+(X)

Normalization constant c is the label frequency

c = Ef [e(x)] =Pr(s=1|y = 1)



Labeling mechanism e(x) = Pr(s = 1]y = 1,x)
c= Ere(x)=Pr(s=1ly =1

Important special case: e(x) = ¢

filx) = f1(x)

This is called the Selected Completely At Random (SCAR) assumption [1]

[1] Elkan & Noto. Learning Classifiers from Only Positive and Unlabeled Data. KDD. 2008



Single-training-set vs case-control scenario
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Single-training-set vs case-control scenario
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Single-training-set vs case-control scenario

In both scenarios: learner has access to
1. i.i.d. sample from true distribution

2. sample from positive distribution, according to labeling mechansim

=» Most PU learning methods can handle both scenarios,
but some conversion is necessary.

=» Pay attention to the scenario when using
methods/implementations



Single-training-set vs case-control scenario
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Label frequency in case-control scenario
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Class prior and label frequency

In single-training-set scenario
Class priora = Pr(y = 1)
Label frequency c = Pr(s = 1|y = 1)

Conversion between the two is possible, given label prior Pr(s = 1),
which can be estimated by counting the labeled examples in the data:

Pr(s=1) = ac
C=-O5
n=os ¥V PelecD= O.5- O



Class prior and label frequency

In case-control scenario
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Single-training-set vs case-control scenario

In this tutorial, we assume the single-training-set scenario,
unless explicitly said otherwise






