
The ACE Data Mining System

User’s Manual

H. Blockeel L. Dehaspe J. Ramon J. Struyf A. Van Assche C. Vens
D. Fierens

March 9, 2009



2



Contents

1 Introduction 7

2 Installing and Running ACE 9

2.1 Using ACE on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Using ACE on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The ACE Command Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Miscellaneous Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 An Example Application 11

4 Input Files 15

4.1 The Knowledge Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 The Settings File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Specifying the goal of the induction . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.2 Language Bias (simple) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.3 Language Bias (advanced) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.4 General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.5 Reading and Changing Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.6 Loading Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 General predictive interface 37

5.1 Building predictive models in ACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 General settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 General output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.1 Detailed result files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3.2 Summary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3



4 CONTENTS

5.4.1 Constructing ensemble models . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.2 Settings specific for ensemble methods . . . . . . . . . . . . . . . . . . . . . . . 40

6 Tilde 43

6.1 Growing trees with Tilde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Settings specific for Tilde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.1 Settings used for all modes of operation . . . . . . . . . . . . . . . . . . . . . . 43

6.2.2 Settings specific for classification mode . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.3 Settings specific for clustering mode . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.4 Settings specific for regression mode . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2.5 Settings specific for model tree mode . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3 Specific output for Tilde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 The ICL system 51

7.1 Building rule sets with ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Settings specific for ICL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 An Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 The background knowledge (BG file) . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3.2 The example data (KB file) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3.3 The language file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.4 The settings file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.5 The output file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 The Warmr System 57

8.1 The Warmr Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2 An Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.2.1 The Frequent Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.3 Generating Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.3.1 Generating Query Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.3.2 Generating Horn Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.4 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.5 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9 The RRL system 65



CONTENTS 5

9.1 RRL input files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.1.1 Defining the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

9.1.2 Using guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10 Incremental learning systems 69

10.1 The TG algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.1.2 Language bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

10.1.3 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

10.1.4 Known issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.2 The TG-Conv algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.3 The KBR algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.3.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.4 The RIB algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10.4.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.5 The TNI algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.6 The IRC algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

11 Utility Packages 75

11.1 The Hypothesis Space Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.2 The Query Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.3 The Prolog Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.4 Destructive Arrays and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.5 The Linear Regression Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11.6 Loading .ARFF Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

References 79



6 CONTENTS



Chapter 1

Introduction

ACE is a data mining system that provides a common interface to a number of relational data mining
algorithms. Relational data mining is the process of finding patterns in a relational database possibly
consisting of multiple tables, and extends classical data mining in the sense that in the latter case only
patterns within single tuples are found, whereas patterns found by relational data mining systems
may extend over different tuples of different relations.

Currently ACE encompasses the following algorithms.

• Tilde is an upgrade of the decision tree learner C4.5 [35] towards relational data mining; it
builds decision trees that allow to predict the value of a certain attribute in a relation from
other information in the database.

• Warmr is an upgrade towards relational data mining of the APRIORI algorithm [1]; it looks
for frequently occurring patterns in a relational database.

• ICL is a relational rule learner. It is an upgrade of the rule learner CN2 [11] towards relational
data mining.

• RegRules is a system for performing linear regression with relational features.

• KBR is a system for learning with first order kernels.

• NLP is a system for learning neural logic programs.

• RIB3 is a relational instance based learning system.

• TG is an incremental version of Tilde.

• RRL is a system for performing reinforcement learning [33, 39] in a relational context. RRL
can use the following incremental regression systems: KBR, NLP, RIB3 and TG.

Except for a brief introduction to the systems included in ACE, this manual does not describe all the
different applications of these systems, nor how the systems work. Information on the representation
of hypotheses, the techniques and algorithms underlying the systems, as well as possible applications
can be found in the following publications.

• (Tilde) A brief introduction to Tilde can be found in [4]. Inducing clustering trees with Tilde
is described in [5]. A detailed description of the Tilde system can be found in [2].

• (Warmr) Information about Warmr can be found in [15].
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• (ICL) Information about ICL is available in [41].

• (RRL) Relational reinforcement learning is introduced in [28]. Different relational regression
techniques that can be used in RRL are described in [24, 23, 32]. Guidance [21] can also be used
in RRL.

• (Common) Most of the systems in ACE support lookahead and discretization. These techniques
are described in [3].

• (Efficiency) ACE includes several techniques for optimizing the efficiency of the induction pro-
cess. The most important ones are query-packs [6] and query transformations [37, 38].

What this manual does describe, is how to use the ACE system. It gives information about how to
prepare the input files, how to interpret the output files, and how to interact with ACE.
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Chapter 2

Installing and Running ACE

This chapter explains how to install and run ACE. It assumes that you have obtained the version of
ACE that matches your operation system from the ACE website1.

2.1 Using ACE on Linux

The Linux version of ACE comes in a file called “ACE-x.y.z-linux.tar.gz”, with x.y.z the version
number. To install it, extract this archive file in a directory of your choice. For example, to install
ACE in your home directory, issue the following command:

tar -xvzf ACE-x.y.z-linux.tar.gz

This assumes that you downloaded “ACE-x.y.z-linux.tar.gz” and saved it into your home directory.
You should now have a new subdirectory called ACE-x.y.z.

Next, set the environment variable ACE_ILP_ROOT as follows:

ACE_ILP_ROOT=$HOME/ACE-x.y.z/linux
export ACE_ILP_ROOT

ACE can now be started by running the command “$ACE_ILP_ROOT/bin/ace”. Note that ACE needs
a settings file to run, otherwise it will print out “No .s file found, exiting.”. A full example of running
ACE on a small data set is covered in Chapter 3.

If you use the “bash” shell (the default on most Linux systems), then it is useful to place the following
in the “.bashrc” settings file, which is located in your home directory.

export ACE_ILP_ROOT=$HOME/ACE-x.y.z/linux
alias ACE=$ACE_ILP_ROOT/bin/ace

If you now log in again (or type “bash -login”), then you will be able to start ACE with the command
alias “ACE”.

1http://www.cs.kuleuven.be/~dtai/ACE
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10 CHAPTER 2. INSTALLING AND RUNNING ACE

2.2 Using ACE on Windows

The Windows version of ACE comes in a file called “ACE-x.y.z-windows.exe”, with x.y.z the version
number. To install it, start it by double clicking it in Windows Explorer. This will start a wizard,
which will guide you through the installation procedure.

After ACE is successfully installed, you should have a new entry in your start menu for ACE. This
entry includes, among others, an icon for opening the Windows command prompt. ACE can be started
by opening this command prompt and issuing the command “ACE”. Note that ACE needs a settings
file to run, otherwise it will print out “No .s file found, exiting.”. A full example of running ACE on
a small data set is covered in Chapter 3.

2.3 The ACE Command Prompt

After starting ACE, it will show the following prompt

Starting interactive session
****************************

For list of commands : h/0 or help/0

ace>

which can be used to give commands to the ACE system. This includes commands for running the
learning systems such as Tilde and Warmr. We discuss each of these commands in the chapters
describing these systems. To obtain a list of all available commands, use the “ help” command.

• help -- h
help(topic ) -- h(topic )
help shows a list of available commands and settings. Detailed information about one of these
can be obtained with help(topic).

2.4 Miscellaneous Commands

• help -- h
help(topic ) -- h(topic )
help shows a list of available commands and settings. Detailed information about one of these
can be obtained with help(topic).

• quit -- q
terminates the program.

• (expert) prompt -- p
allows the user to leave the ACE interactive session and go to the Prolog prompt.



Chapter 3

An Example Application

Distributed together with the ACE system is a dataset called Machines. The Machines dataset consists
of a description of a number of machines, each of which have a number of components. Some of these
components may be worn, while others are still in good shape. The dataset also contains for each
machine an action that is to be undertaken: it should either be fixed, sent back to the manufacturer,
or else no action need be undertaken.

On this Machine data set a number of learning tasks can be defined. For instance, a first task could
be to derive a criterion that allows one to decide for a new machine whether it should be fixed, sent
back, or left alone based on the components in it that are worn. In other words, the task consists of
learning a classifier, a function that classifies machines into one of three classes. The function should
of course be consistent with the data set. The Tilde algorithm could be used to solve this task.

A second possible task is to find out which kind of components are often worn, or possibly which
combinations of components are often together worn. This is what we call a search for frequent
patterns, and for this kind of task the Warmr algorithm is useful. Related to the discovery of
frequent patterns is the discovery of association rules; association rules are rules of the form “when
pattern p occurs, pattern q usually also occurs” with p and q to be filled in by the discovery system.
This kind of tasks, too, can be performed by Warmr.

Example 1. Assume the following data are given:

Background:

/* information about which components are replaceable and which are not */
replaceable(gear).
replaceable(wheel).
replaceable(chain).
not_replaceable(engine).
not_replaceable(control_unit).

Examples:

Machine 1: worn(gear), worn(engine), sendback. /* gear & engine are worn */
Machine 2: ok. /* nothing is worn here */
Machine 3: worn(gear), fix. /* gear is worn, fix machine */
Machine 4: worn(engine), sendback.
Machine 5: worn(gear), worn(chain), fix.

11
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worn(X)
replaceable(X)
not_replaceable(X)
worn(Y)
replaceable(Y)
not_replaceable(Y)

fss|
fs|s

fss|
fss|
fss|

worn(X)

ok

worn(X)

oknot_replaceable(X)

sendback fix

worn(X)
replaceable(X)
not_replaceable(X)

fsso|
fsso|

?

?

fss|o    *

ss|f     *

Figure 3.1: Decision tree corresponding to the classification rule in Example 1

What is the relationship between the action to be undertaken (sendback, fix or ok) and the worn
components? The Tilde system, when confronted with the above data, might build a classifier of the
following form:

if the machine contains some component X that is worn and not replaceable
then sendback
else if it contains some component X that is worn {but none that are worn and not replaceable}
then fix
else {it contains no worn components} the machine is ok.

Classifiers induced by Tilde are represented in the form of a so-called first order logical decision tree.
The tree corresponding to the above rule is the rightmost one in Figure3.1.

The Warmr system could be used on these data to check which patterns frequently occur. For instance,
it might detect that in 60% of the cases the gear is worn; that in 60% of the cases some replaceable
component is worn (be it gear, chain or wheel); that in 40% of the cases a machine has to be sent
back; that in 40% of the cases the engine was worn; and that in 40% of the cases both the engine was
worn and the machine had to be sent back. From the last three statements it follows e.g. that in all
cases where the machine had to be sent back, the engine was worn. This is an association rule.

In order to be able to use Tilde and Warmr, it is useful to understand to some extent how they work.
Both systems search for hypotheses (patterns, classifiers, or whatever) by starting with one or more
trivial (and obviously wrong) working hypotheses and continuously refine these working hypotheses
until correct hypotheses are obtained. This refinement process is to some extent controlled by the
user of the system.

For instance, when building the above-mentioned rule Tilde might first notice that the occurrence of
worn components has some influence on the classification of the machine, so it builds a first approxi-
mation of the classifier :

if the machine contains worn components then ? else the machine is ok

The else part of the rule is already correct, but the then part needs to be refined. After the following
refinement step Tilde will arrive at the classifier mentioned above. The gradual construction of the
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final theory is easiest to understand when looking at the theories in tree format; this is illustrated in
Figure 3.1.

Similarly, Warmr starts with simple patterns and combines them into more complex patterns. For
instance, it would first detect that in 40% of the cases a machine contains a worn engine and that in
40% of the cases it needs to be sent back, and only afterwards combine these two patterns into a new
pattern: in 40% of the cases a machine both has a worn engine and needs to be sent back.

As mentioned, the process of refining patterns, rules etc. until good ones are obtained, is controlled
by the user. Basically, the user tells the system how patterns can be extended to form more complex
patterns. In its simplest form this just means that the user tells ACE which properties are allowed to
occur in the patterns. Experienced users can control the refinement process in a much more detailed
manner. This is exactly what a large part of this manual is about.
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Chapter 4

Input Files

The directory where ACE is run should contain files called app.kb, app.bg and app.s
where app is the name of the application. The use of these files is as follows:

• app.kb : this file contains the examples, e.g., the descriptions of the machines in our running
example. Both training and test data are included in this file.

• app.bg : this file, which is optional, contains background knowledge. In our running example,
the information on replaceability would be put here.

• app.s : this is called the settings file; it allows the user to control certain parameters of the
algorithms incorporated in ACE. This file is discussed in Section 4.2.

4.1 The Knowledge Base

The knowledge base is assumed to be in the files app.kb (which should contain example-related
information) and app.bg (which should contain background knowledge about the domain). A predicate
or relation can be considered to be background knowledge if adding an example to the set of examples
does not change the definition of that predicate.

The appl.kb, appl.bg and appl.s files are prolog files. They can be created using a text editor or
by a small prolog program translating you favorite database format into prolog.

There are two different formats available for the knowledge base. In one format, which we call the
models format, each individual example is described by a so-called model, a block beginning with
begin(model(name)) and ending with end(model(name)). All facts in between the model delimiters
are considered to describe properties of the single example.

The second format, which we refer to as the key format, is closer to normal Prolog syntax and can
actually be seen as just a Prolog program. In this format, there is a less clear distinction between
example descriptions and background knowledge. Individual examples are referred to by a certain
identifier, and properties of a single example are given by listing facts that refer to this identifier.

Example 2. The examples of the Machines dataset mentioned above can be represented using the
models format as follows:

begin(model(machine1)).
worn(gear).

15
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worn(engine).
sendback.
end(model(machine1)).

begin(model(machine2)).
ok.
end(model(machine2)).

begin(model(machine3)).
worn(gear).
fix.
end(model(machine3)).

begin(model(machine4)).
worn(engine).
sendback.
end(model(machine4)).

begin(model(machine5)).
worn(gear).
worn(chain).
fix.
end(model(machine5)).

In this format the background knowledge can be represented as follows:

replaceable(gear).
replaceable(wheel).
replaceable(chain).
not_replaceable(engine).
not_replaceable(control_unit).

When using the key format, facts about specific examples need an extra argument to indicate which
example they refer to. The distinction between background and example predicates becomes somewhat
blurred in this case. One could say that background predicates are those predicates that do not refer
to any specific example. In the context of our Machines dataset this distinction is obvious; in some
situations however it may not be so clear-cut.

machine(machine1, sendback).
worn(machine1, gear).
worn(machine1, engine).

machine(machine2, ok).

machine(machine3, fix).
worn(machine3, gear).

machine(machine4, sendback).
worn(machine4, engine).

machine(machine5, fix).
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worn(machine5, gear).
worn(machine5, chain).

replaceable(gear).
replaceable(wheel).
replaceable(chain).
not_replaceable(engine).
not_replaceable(control_unit).

Note that the models format imposes a higher modularity on the data than the key format, and may
be preferable when different examples do not share much relevant information. The key format is
closer to the relational database format and may be preferable if the data are originally stored in such
a database.

The ACE command knowledge info (shorthand ni) can be used to display some information about
the knowledge base that is currently loaded.

4.2 The Settings File

The file app.s contains a number of settings that influence the way in which ACE works. These
settings can mainly be divided in two kinds: settings that define the language bias (the kind of
patterns that can be found), and settings that control the system in some other way.

The language bias can be defined in two ways. For beginning users there are the warmode-settings;
these are simple to use and allow to define a good language bias very quickly. warmode-settings are
automatically translated by the system to a lower level consisting of rmode, type and other settings.
The user can also specify the language directly at this lower level, which offers better control of the
way in which the program traverses the search space but is more complicated.

In the following sections we first discuss the features allowing a simple language bias specification,
then the advanced features, and finally the remaining (not language-related) settings are explained.

4.2.1 Specifying the goal of the induction

The most important thing to tell ACE is the goal of the induction process; i.e., what Tilde has to
predict, or what Warmr has to count. The way in which this is done is different for the two available
formats.

The Key Format

In Tilde, the user indicates the goal of the induction by means of the predict declaration. The
predict predicate takes as argument an atom of the predicate where each argument is + or - (these
are mode declarators; see further). - symbols indicate the arguments that are to be predicted.

For instance, if the 3rd argument of a predicate p of arity 4 is to be predicted from the other information
in the database, the declaration is

predict(p(+,+,-,+))
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The arguments to be predicted can be numeric or symbolic; depending on this the regression, classifi-
cation of clustering subsystems of Tilde will be used. If a typed language is used (see further), types
can be added to the arguments of the predicate, behind the mode declarators. The above example
then becomes, e.g.,

predict(p(+name,+address,-phone,+fax))

In Warmr, the atom that will be used to identify examples is indicated with the warmode key decla-
ration.

warmode key(pred (−targ1, ..., −targn)).

All queries will have the atom specified with warmode key in the front. Each substitution of the
variables of this atom will be associated with an example. The total number of such substitutions for
which the query succeeds will determine the frequency of the query.

The Models Format

In the models format, it is unnecessary to tell Warmr what it has to count: it automatically counts
models. For Tilde, the user still needs to specify what the model that is going to be built should
predict. This can be done in two ways: one can use the predict setting as in the key format, but with
the key arguments dropped, or one can use the approach outlined hereafter.

In the classification setting, a list of classes needs to be given. A class in this context is just a nullary
predicate that succeeds for a given example if and only if the example belongs to the class. The list
of classes is given using the classes setting. It defaults to [pos, neg].

In the regression setting of Tilde, the target attribute is a numeric argument of a predicate. Which
argument of which predicate is to be predicted is indicated using the euclid setting. E.g.,

euclid(person(ID, Name, Age), Age).

indicates that the Age of persons is to be predicted. Each example is supposed to contain one person
literal; the third argument of this literal is the one that should be predicted.

Multiple euclid facts may be given, indicating that there are multiple target variables (i.e., a vector
of numbers is to be predicted instead of a single number).

Regression, Classification, Clustering

Tilde actually consists of several instantiations of a generic “top-down induction of decision trees”
algorithm; these different instantiations allow it to perform regression, classification or clustering. The
tilde mode setting indicates which instantiation of Tilde should be used; possible values for it are
classify, regression and cluster.

Example 3. For the Machines example, the classes are fix, sendback and ok. This is indicated by
putting in the settings file

classes([sendback,fix,ok]).

In the key setting, a predict setting would be used:
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predict(machine(+,-)).

Tilde automatically determines which values occur for the argument that is to be predicted.

Assume we would want to predict a cost for the reparation of machines; this cost is a number. We
then need to set Tilde in regression mode, which is done by specifying

tilde_mode(regression).

(For classification no tilde mode need be mentioned because classification is the default.)

Assuming the cost of examples in the key setting is indicated by facts such as cost(machine, 10),
then the predict setting becomes

predict(cost(+,-)).

whereas in the models setting, assuming the cost is indicated by facts such as cost(10), a euclid
setting needs to be given:

euclid(cost(X), X).

4.2.2 Language Bias (simple)

Essentially, the refinement operator (and consequently, the hypothesis language) is specified using
facts of the following form:

warmode(pred(tm1,tm2,...,tmn) ).

Such a fact specifies that a refinement step can consist of adding the literal pred/n to the query to be
refined. The tm’s are type and mode declarations for variables (explained below) or constants.

According to variant

warmode(N:pred(tm1,tm2,...,tmn) ).

the literal can be added at most N times. By default, N is infinite.

The arguments in the warmode declaration are mode declarators, possibly extended with types. Three
basic modes are available:

• + means that the variable is an input variable; i.e. it has to be bound when adding this literal.
To this end, the variable is unified with a variable already occurring in the query.

• − means this is a new variable; no unification is performed with already existing variables
(though variables that are introduced later on may be unified with this variable)

• \ means that a new variable is to be put here, and a constraint should be added to the clause
stating that the value of the variable has to be different from the values of any other variable of
the same type.



20 CHAPTER 4. INPUT FILES

The basic modes can be combined, yielding the additional mode operators +-, +\, -\, and +-\. For
instance, +- means that the variable can, but need not be bound (unification with other variables is
possible but not mandatory).

Example 4. Suppose the following warmode-facts (among others) are given:

warmode(p(+)).
warmode(q(+,-)).
warmode(r(+-\)).

Then a query ?- a(X), b(Y) can be refined into:

?- a(X), b(Y), p(X). % p’s argument has to be bound
?- a(X), b(Y), p(Y).
?- a(X), b(Y), q(X,Z). % q’s first argument has to be bound,
?- a(X), b(Y), q(Y,Z). % its second argument is a new variable.
?- a(X), b(Y), r(X). % r’s argument can but need not be bound
?- a(X), b(Y), r(Y).
?- a(X), b(Y), r(Z).
?- a(X), b(Y), r(Z), Z \== X, Z \== Y.

If a typed language is used, variables can only be unified if their types correspond (i.e. the queries
must be type-conform). A typed language can be specified by specifying a type after the mode of a
variable.

Example 5. These are some type specifications:

warmode(info(+string, -number)).
warmode(+number < +number).
warmode(member(+-, +list)).

The operator < will only be used with variables that have the type number. The member predicate is
partially untyped: its second argument must be a list, but its first argument can be anything.

Note that types only influence the way in which variables are unified, and nothing else. Constants are
always considered to be untyped. For instance, if the type declaration warmode(p(+a,-b)) is present,
a literal such as p(1,1) might be added if the other warmode declarations allow it.

4.2.3 Language Bias (advanced)

Rmode Specifications

At the lower level, the refinement operator (and consequently, the hypothesis language) is specified
using the rmode predicate. The simplest form of an rmode fact is the following:

rmode(conj ).

Such a fact specifies that a refinement step can consist of adding the conjunction of literals conj to
the query to be refined.

If the conjunction can be added at most N times, the following form can be used:
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rmode(N: conj ).

N can be any natural number or inf (for infinity). Writing inf is equivalent to not providing a
maximum (as in the simplest form of rmode).

Note that if several rmode facts allow the same conjunction to be added, the total number of times
the literals can be added is the sum of all N ’s. You can view rmode facts as “bags” from which
conjunctions can be taken; if one bag is empty the same conjunction might be chosen from another
bag.

For the variables occurring in the conjunction, modes can be specified. The same modes are available
as for warmodes. If a variable occurs several times in one conjunction, its mode should be indicated
only once, at its first occurrence.

Example 6. Suppose the following rmode-facts (among others) are given:

rmode(3: p(+X)).
rmode(3: q(+X, -Y)).
rmode(3: (r(+-X), s(X))).

Then a query ?- a(X), b(Y) can be refined into:

?- a(X), b(Y), p(X). % p’s argument has to be bound
?- a(X), b(Y), p(Y).
?- a(X), b(Y), q(X,Z). % q’s first argument has to be bound,
?- a(X), b(Y), q(Y,Z). % its second argument is a new variable.
?- a(X), b(Y), r(X), s(X). % r’s argument can but need not be bound
?- a(X), b(Y), r(Y), s(Y). % and s has the same argument as r
?- a(X), b(Y), r(Z), s(Z).

Note the difference with warmode-specifications: variables are used instead of types, and conjunctions
can be specified instead of single literals.

Generation of constants

Suppose that a literal needs to be added that contains some constant in the place of one of its
arguments. One could for instance write mode declarations such as

rmode(p(+X, high)).
rmode(p(+X, medium)).
rmode(p(+X, low)).

When many constants are meaningful in such a position, specifying rmodes in this way becomes
tedious. The ACE system provides several ways to automatically generate rmodes with different
constants.

A simple form of constant generation, which is just an abbreviation of the above, is

rmode(p(+X, #[high, medium, low])).

In rmodes the #-sign always is a placeholder for a constant. When it is followed by a list, the # symbol
will be replaced by each individual element of the list. When it stands alone, it will be replaced by
any constant that appears in that place anywhere in the data. Thus, when ACE encounters the rmode
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rmode(p(+X, #)).

it will check which values can occur as the second argument of the p/2 predicate in the data; the #
will be replaced by each of these values.

Finally, the # symbol can be followed by a variable. In such cases, it will be replaced by any value that
the mentioned variable could be instantiated to, according to the first literal where it occurs (which
may but need not be the literal in which the # occurs). For instance, in

rmode((p(+X, Y), Y < #Y)).

constants are determined as follows: the variable occurring after # is Y; Y first occurs in p(X,Y), so it
is checked in the data which values occur as the second argument of p/2. Assuming the values 3, 7,
12, 16 are found, then the current clause can be refined with the following four conjunctions :

rmode((p(+X, Y), Y < 3)).
rmode((p(+X, Y), Y < 7)).
rmode((p(+X, Y), Y < 12)).
rmode((p(+X, Y), Y < 16)).

Note that the stand-alone # can be seen as an abbreviation of # with an anonymous variable.

To summarize this: besides (possibly moded) variables or constants, there are three kinds of #-
constructs that can be put in the place of arguments of literals: #list, #var or #.

When there is more then one #-construct in an rmode specification, all posible combinations of the
constants that can be substituted into these constructs will be generated.

begin(model(1)).
p(a,x).

end(model(1)).
begin(model(2)).

p(b,y).
end(model(2)).

rmode(p(#,#)).

p(a,x)
p(a,y)
p(b,x)
p(b,y)

Sometimes it makes sense to have all combinations, especially when comparing a variable with a #var
construct, but most of the times it is much more efficient to try only those combinations that effectively
occur in the examples. Therefor it is possible to assign each #-construct to a group. For a specific
group only the combinations that occur in the data are used. To assign a construct to a group the
syntax is extended as follows:

# −→ #group
#[...] −→ #(group, [...])
#var −→ #(group, var)

#-constructs without an indication for a group are always in separate groups (each #-construct a
different group).

Example 7.

begin(model(1)).
p(a,1).
p(b,2).
q(u).

end(model(1)).

begin(model(2)).
p(a,3).
p(c,1).
q(v).

end(model(2)).
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rmode(p(#,#)).

p(a,1) p(b,1) p(c,1)
p(a,2) p(b,2) p(c,2)
p(a,3) p(b,3) p(c,3)

rmode(p(#1,#1)).

p(a,1) p(c,1)
p(a,3)
p(b,2)

rmode(p(#[a,c],#)).

p(a,1) p(c,1)
p(a,2) p(c,2)
p(a,3) p(c,3)

rmode(p(#(1,[a,c]),#1)).

p(a,1)
p(a,3)
p(c,1)

rmode((p(#, A), q(#))).

(p(a,A), q(u)) (p(c,A), q(u))
(p(a,A), q(v)) (p(c,A), q(v))
(p(b,A), q(u))
(p(b,A), q(v))

rmode((p(#1, A), q(#1))).

(p(a,A), q(u))
(p(a,A), q(v))
(p(b,A), q(u))
(p(c,A), q(v))

A more complex and more general specification for automatic constant generation is of the following
form:1

rmode(N: #(V : conj1, conj2 )).

In this case V is a variable or a tuple (V1, . . . , Vn) of variables that occur in conj1 and conj2. Constant
generation will happen as follows: first conj1 is used to generate all substitutions for V . Then the
substitutions for V are filled in in conj2, which is the conjunction that will be effectively added to the
current clause.

The current form generalizes over the previous ones because the user can write any code for the
generation of constants and have that code called during clause refinement.

For instance, the following constructs are equivalent (assuming member is defined as background knowl-
edge):

rmode(#(C: member(C, [1,2,3,4,5,6,7,8,9,10]), +X = C)).
rmode(+X = #[1,2,3,4,5,6,7,8,9,10])).

and also the following two constructs are equivalent:

rmode(1: #(C: p(X,C), (p(X,Y), Y<C))).
rmode(1: (p(X,Y), Y<#Y)).

but the rmode

rmode(#(C: useful_constant(C), p(X,C))).

in combination with a definition of useful constant in background knowledge is not equivalent to
any simpler #-construct.

The most complex form of the rmode-specification is
1Note: due to the Prolog syntax definition, there must be a space between the colon and the # operators when both

occur in one rmode.
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rmode(N: #(n*m*V : conj1, conj2 )).

where n and m are numbers or inf (for infinity), and V is a variable or tuple of variables that occur
in both conj1 and conj2.

Just before the actual refinements are computed, the conjunction conj1 is called. It can be called for at
most N examples (each call occurs in the context of a different example). For each example, at most
m answer substitutions for the variables that are shared with V are stored. Each answer substitution
of V generates an instantiation of conj2, and each such instantiation is considered for addition to the
current clause.

Example 8. Suppose the current query to be refined is ?- a(X), b(Y,Z). Then the following speci-
fication

rmode(1: #(1*6*C: member(C, [1,2,3,4,5,6,7,8,9,10]), +X = C)).

gives rise to these refinements:

?- a(X), b(Y,Z), X=1.
?- a(X), b(Y,Z), X=2.
...
?- a(X), b(Y,Z), X=6.
?- a(X), b(Y,Z), Y=1.
?- a(X), b(Y,Z), Y=2.
...
?- a(X), b(Y,Z), Y=6.
?- a(X), b(Y,Z), Z=1.
?- a(X), b(Y,Z), Z=2.
...
?- a(X), b(Y,Z), Z=6.

The specification

rmode(1: #(1000*3*C: p(C), p(C))).

yields, for example:

?- a(X), b(Y,Z), p(2.4).
?- a(X), b(Y,Z), p(1.8).
?- a(X), b(Y,Z), p(1.1).
?- a(X), b(Y,Z), p(1.5).
?- a(X), b(Y,Z), p(2.3).
...

In each example (with a maximum of 1000), 3 different values for p’s argument that occur in that
example are chosen.2 These constants will occur in the possible refinements. For instance, in the
above example, it might be that the first model (example) contained the facts p(2.4), p(1.8), the
second p(1.1), p(1.5), p(2.3), p(2.8) (with only the first 3 of these 4 selected), and so on.

2It is not specified how the examples are chosen, nor how the constants are chosen within an example.
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The most complex #-construct differs from the previous one in an important aspect. For the previous
construct the constants that are generated are always the same, whatever the set of examples that is
currently under investigation; they are taken from the background knowledge. Here, the generated
constants are taken from the examples that are covered by the clause currently being refined.

In general, the following constructs make use of background knowledge only (i.e. they will not access
the examples themselves):

• #list

• #(V :conj1, conj2).

The following constructs do access the examples:

• #

• #var,

• #(n*m*V :conj1, conj2).

There is a difference in efficiency between the two groups of constructs: for those that access only
background knowledge, constant generation is much more efficient. However, when using data depen-
dend constant generation, less constants might be generated, making query evaluation more efficient
(as less queries have to be evaluated). The type that is to be preferred therefore depends on the
application at hand.

It is possible to convert data dependent constant generators into independent ones during a preprocess-
ing step by using the setting default preprocessing(on). The constants that have been generated
during preprocessing can be inspected by issuing the sel (show expanded language) command at the
ACE prompt.

The most complex and powerful method for specifying constant generators in ACE is as lists of
generators with options. All types of constant generation discussed above are translated into this
format automatically by ACE before they are passed to the refinement operator. It is possible to to
see the result of this translation with the sel command. The syntax is as follows

rmode(#(generator(s), conj)).

or

rmode(N: #(generator(s), conj)).

generator(s) can be one generator or a list of generators (i.e., [G1, . . . , Gn]).

A generator Gi is defined as gen:optionlist, where gen is the query that generates the constants, and
optionlist is a list of options that influence the generation itself or that influence the final set of
constants. The syntax for each option is optionname=value. There is one option that is obligatory,
the vars option. This option specifies the variables for which this generator generates constants. The
value of this option is always a list of one or more variables. In the example below, constants are
generated for the variable X.

Example 9. The rmode

rmode(#(member(X,[a,b,c]):[vars=[X]], p(X))).

generates the refinements p(a), p(b) and p(c).
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Except for the option vars, all the other options are optional. If an option is ommitted, it gets a
default value assigned to it. Below each option is discussed in more detail.

• models:

– no: the generator is executed once, and has no access to the examples (only to the back-
ground theory).

– n (integer): the generator is executed for the n first examples in the knowledge base. The
generated constants are collected from these examples (duplicates are removed).

– inf: the same behavior as with n = the number of available examples.

Default value: no.

• subst:

– n (integer): collect only the first n constant combinations for each example.

Default value: inf.

• preprocessing:

– off: generation is performed for every refinement step.

– on: generation is performed once, during a preprocessing step.

Default value: depends on the value of the setting default preprocessing. The default for the
setting default preprocessing is off.

• min:

– n (integer): only combinations of constants that occur in at least n examples are included.

Default value: depends on the value of the setting default min. The default for the setting
default min is 1.

Example 10. The rmode

rmode(1: #(1000*3*C: p(C), p(C))).

is equivalent to:

rmode(1: #(p(C):[vars=[C],models=1000,subst=3],p(C))).

Constraints on Variables

It is possible to explicitly specify constraints that must hold for variables that occur in certain places.
These constraints are akin to those imposed by using modes and types, but offer more flexibility.

Constraints can be specified in the following way:

constraint(conj, constr ).
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This specification means that whenever conj is added to a clause, constr should not be violated.

Example 11. Suppose bond literals can be added under the following conditions:

rmode(5:bond(+X, +Y, -Z)).
constraint(bond(X, Y, Z), X \== Y).

According to the rmode specification, bond(X,Y ,Z) can be added to a clause if X and Y are unified
with some variable in that clause. If X and Y have the same type, they might be unified with one
and the same variable V , such that bond(V,V,Z) is added to the clause. However, the constraint
specification prohibits this.

The second argument of the constraint specification can be any Prolog query. Moreover, two extra
predicates can be used: occurs/1 and not occurs/1. These check whether a predicate already occurs
in a clause.

Example 12. The specification

rmode(p(+X,-Y)).
constraint(p(X,Y), not_occurs(p(X,_))).

tells ACE that p should not be added with a first argument that already occurs as first argument of a
p-literal. This can e.g. be used to construct “chains” of p-literals, such as p(A,B), p(B,C), p(C,D),
avoiding the combinatorial explosion of possible unifications that would occur if each variable could be
unified with any variable already occurring.

The second argument of a constraint specification can also include the predicate user/2, which
indicates a user defined constraint. This predicate will unify its first argument with the current query
and then call the goal in its second argument, which typically includes a call to a user defined predicate
that implements the constraint.

Example 13. The specification

rmode(p(+X,-Y)).
constraint(p(X,Y), user(Q, my_constraint(Q,X,Y))).

tells ACE that p can only be added if the background knowledge predicate my_constraint/3 succeeds.
Before my_constraint/3 is called, Q is unified with the current query thereby allowing my_constraint/3
to test arbitrary properties of the query.

Types

If a typed language is used, variables can only be unified if their types correspond (i.e. the queries must
be type-conform). A typed language can be specified by putting the following fact into the settings:

typed language(yes).

If this fact is present, then type specifications have to be present for each predicate. If a predicate is
untyped, this can still be indicated by using anonymous variables where normally type names would
be put.

A type specification looks as follows:
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type(pred (targ1, ..., targn)).

Pred is the name of the predicate, targi is a constant denoting a type, or a variable.

Example 14. These are some type specifications:

type(info(string, number)).
type(number < number).
type(X = X).
type(member(_, list)).

Variables that have the same type can always be compared using the equality operator, but the operator
< will only be used with variables that have the type number. The member predicate is partially untyped:
its second argument must be a list, but its first argument can be anything.

Note that types only influence the way in which variables are unified, and nothing else. Constants
are always considered to be untyped. For instance, if the type declaration type(p(a,b)) is present,
a literal such as p(1,1) might be added if the rmode declarations allow it.

The relationship between warmodes, rmodes and types is that for each warmode specification one can
always generate a couple of rmode and type specifications that is equivalent. Indeed, internally war-
modes are just converted into rmodes and types (and a typed language(yes) declaration if needed).

Lookahead

When refining queries, Tilde can look ahead in the refinement lattice, in those cases where that is
allowed explicitly by the user. Lookahead is computationally expensive, but in some cases the quality
of a refinement can be assessed better. Therefore it is important to allow lookahead where it is useful,
but not more than necessary.

Typically, lookahead is useful when a conjunction is added that in itself will always succeed (i.e. it
does not yield any gain), but introduces new variables that may be important for the classification.
The advantage of adding such conjunctions would otherwise be underestimated.

Lookahead-specifications look as follows:

lookahead(pattern, conj ).

Such a specification indicated that, whenever a conjunction is added that matches with pattern, the
conjunction conj can (but need not) be added as well.

Example 15. Consider the following lookahead specifications:

lookahead(next_to(X,Y), large(Y)).
lookahead((on(X,Y), next_to(Y,Z)), on(X,Z)).

They tell Tilde that whenever next to(A,B) can be added, the addition of next to(A,B), large(B)
(in one refinement step) also has to be considered. And whenever a conjunction on(A,B), next to(B,C)
can be added, on(A,B), next to(B,C), on(A,C) should be tried as well.

Lookahead can be allowed recursively, e.g.:
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lookahead(next_to(X,Y), next_to(Y,Z)).

allows a chain of next to literals to be introduced in one refinement step. In order to avoid infinite
recursion, a maximal lookahead depth can be given by means of

max lookahead(n)

n is the maximal number of lookahead levels that is allowed. It defaults to 1.

Auto-lookahead

Lookahead statements can also be generated automatically by ACE by using:

auto_lookahead(Pred, Varlist).

where Pred is the pattern and Varlist are the variables that have to be bound in the lookahead
statements that will be generated. ACE will generate a lookahead statement to each rmode that has
an input variable of the same type as a variable from Varlist. E.g.,

type(relation(key, attr1, attr2)).
type(test_1(attr1)).
type(test_2(attr2, value)).

rmode(test_1(+Attr)).
rmode(test_2(+Attr, #[1,2,3])).

auto_lookahead(relation(Key, Attr1, Attr2), [Attr1, Attr2]).

Will generate:

lookahead(relation(Key, Attr1, Attr2), test_1(Attr1))
lookahead(relation(Key, Attr1, Attr2), test_2(Attr2, #[1,2,3]))

Discretization

Discretization is a technique used by symbolic learners to handle numeric data. A continuous domain
is transformed into a discrete domain by introducing discrete values that correspond to intervals in
the continuous domain. The discrete domain can be characterized by the thresholds between the
intervals. For instance, the continuous domain [0, 1] could be discretized into three discrete values
{small,average,large} corresponding to the intervals [0, 0.25), [0.25, 0.75), [0.75, 1]. This particu-
lar discretization is characterized completely by the thresholds 0.25 and 0.75.

The question is, then, how to find suitable values for these thresholds. There are two possibilities: we
can either do unsupervised discretization or supervised discretization. The unsupervised discretization
algorithm is based on equal-frequency discretization: it takes the discretization thresholds such that
in each discretization bin there is (approximately) the same number of examples. The supervised
discretization algorithm, originally developed for ICL [42], is based on Fayyad and Irani’s work [29, 19]
and takes the discretization thresholds such that entropy is minimised. In this manual, we do not
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discuss the details of the algorithms, but focus on how the user can control the discretization process.
Note: at this moment discretization is only available in classification mode.

To use unsupervised, equal-frequency discretization, specify:

discretize(equal_freq).

To use supervised, entropy-based discretization, specify:

discretize(entropy).

Entropy-based discretization is the default.

The user can indicate that a variable has a continuous domain and has to be discretized, by means of:

discretization(bounds(n)).
to be discretized(pred, varlist ).
to be discretized(pred, n, varlist ).

n is the number of thresholds discretization is allowed to yield at most. It can be specified for all
predicates by means of discretization(bounds(n)), but this value can be overridden for any specific
predicate by explicitly adding it to the to be discretized specification. Varlist contains the variables
that are to be discretized.

Example 16. Let us take a look at the following specifications:

discretization(bounds(3)).
to_be_discretized(employee(Name, Address, ID, Age), [Age]).
to_be_discretized(wage(ID, Wage), 5, [Wage]).

Ages of employees are discretized into four discrete values (i.e. there are three thresholds). Wages are
discretized with five thresholds.

Discretization is performed one time, before the induction itself starts. After discretization is done,
a predicate threshold is available that upon backtracking consecutively returns each threshold for a
variable in a predicate. The predicate follows the following format:

threshold(pred, varlist, const )

Pred and varlist should correspond with the pred and varlist arguments of a to be discretized fact.
The const argument should be free when calling the predicate, and is instantiated with a threshold
value.

Example 17. For the specification of example 16, the following results might have been obtained:

discretized(employee(Name, Address, ID, Age), [Age], [21,35,50]).
discretized(wage(ID, Wage), [Wage], [35000, 45000, 50000, 70000, 85000]).

where the third argument of discretized shows which list of constants has been produced.

A typical use of these results would be:
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rmode(#(1*10*C: threshold(employee(_, _, _, Age), [Age], C),
+Age < C)).

rmode(#(1*10*C: threshold(wage(_, Wage), [Wage], C),
+Wage < C)).

The #-construct indicates that some age or wage variable should be compared with a threshold for that
variable.

Aggregates

Aggregation is a technique to summarize data. In this context, it can be used to summarize relations
that occur within examples. For more information on aggregates, please consult Van Assche and
Vens’s work [40]. In this manual, we concentrate on how the user can control the use of aggregates.

In ACE aggregates have the following form:

aggregate(F, Q, V, R),

where F is an aggregate function (e.g., count), V is an aggregate variable occurring in the aggregate
query Q, and R is the result of applying F to the set of all answer substitutions for V that Q results
in. The result R has to be compared to a (number of) value(s). The following aggregate functions are
provided: max, min, avg, sum, mode, count, count dist.

Example 18. In order to predict the wage of an employee, it may be useful to include some statistics
concerning the number or children he/she has (number of children, maximum age of children,...).
Suppose we have the predicate child(EmployeeID, ChildID, Age). Then the following type definition
and rmodes can be used:

type(aggregate(aggfunction,aggquery,Aggvariable,aggresult).
rmode(5:(aggregate(count, child(+E, -C, -A), _, Res), Res > #[2,3,4])).
rmode(5:(aggregate(max, child(+E, -C, -A), -A, Res), Res > #[10,15,20])).
rmode(5: #(V: member(V,[10,15,20]),

(aggregate(avg, child(+E, -C, -A), -A, Res), Res < V))).

Instead of providing the list of values, it is of course possible to use discretization:

discretization(bounds(3)).
to_be_discretized(child(Empl, Child, Age),[Age]).
rmode(5: #(X: threshold(child(Empl, Child, Age),[Age], X),

(aggregate(avg,child(+E, -C, -A), -A, Res), Res <X))).

When including many aggregates, it may be useful to include aggcondition constructs (instead of
writing all the separate rmodes):

aggcondition(aggfunctionlist, aggquery, aggvariable,operatorlist,valuelist).

Example 19. For the employee example, the following type definition and aggcondition constructs

type(aggregate(aggfunction,aggquery,aggvariable,aggresult).
aggcondition([count], child(+E, -C, -A), C, [’>’,’<’],[2,3,4]).
aggcondition([max,min], child(+E, -C, -A), A, [’>’,’<’,’=’],[5,10,15,20]).
aggcondition([avg], child(+E, -C, -A), A, [’>’,’<’,’=’],

(X: threshold(child(Empl, Child, Age),[Age], X)).
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are equivalent with the following list of rmodes.

type(aggregate(aggfunction,aggquery,Aggvariable,aggresult).
rmode(aggregate(count, child(+E, -C, -A), C, Res), Res > #[2,3,4]).
rmode(aggregate(count, child(+E, -C, -A), C, Res), Res < #[2,3,4]).
rmode(aggregate(max, child(+E, -C, -A), -A, Res), Res > #[5,10,15,20]).
rmode(aggregate(max, child(+E, -C, -A), -A, Res), Res < #[5,10,15,20]).
rmode(aggregate(max, child(+E, -C, -A), -A, Res), Res = #[5,10,15,20]).
rmode(aggregate(min, child(+E, -C, -A), -A, Res), Res > #[5,10,15,20]).
rmode(aggregate(min, child(+E, -C, -A), -A, Res), Res < #[5,10,15,20]).
rmode(aggregate(min, child(+E, -C, -A), -A, Res), Res = #[5,10,15,20]).
rmode(#(X: threshold(child(Empl, Child, Age),[Age], X),

(aggregate(avg,child(+E, -C, -A), -A, Res), Res < X))).
rmode(#(X: threshold(child(E,Ch,A),[A], X),

(aggregate(avg,child(+E, -C, -A), -A, Res), Res > X))).
rmode(#(X: threshold(child(E,Ch,A),[A], X),

(aggregate(avg,child(+E, -C, -A), -A, Res), Res = X))).

It is possible to learn complex aggregates (i.e. aggregates that consist of selection conditions in the
aggregate query). Due to memory problems that might occur when allowing multiple conjuncts in an
aggregate query, we restricted the maximum number of conjuncts to two.
A number of settings are available.

• aggregate refinement(s).
s is yes or no. This setting introduces selection conditions in the aggregate query of aggregates
already present in the theory (e.g., in Tilde it adds a node with an aggregate condition which is
a refinement of an aggregate condition in a node higher in the tree).
Default: no.

• aggregate lookahead(s).
s is yes or no. This setting allows to directly introduce complex aggregates (i.e. they do not
have to be refinements of an aggregate already present).
Default: no.

• aggregate recursion(s).
s is yes or no. This setting states whether aggregates can occur inside aggregate queries.
Default: no.

• aggregate refiners(s).
s is yes or no. This setting states whether the selection conditions used to refine aggregates can
come from any rmode or from a special set of rmodes (this can control the number of refinements).
If yes, a number of rmodes starting with agg have to be provided, e.g. rmode(agg:male(+C)).
Default: no.

The search can be made more efficient by using the so-called monotone refinement operator (see [43]).
Two ordered classes of aggregate functions are provided: generalized averages and generalized counts.
The use of the refinement operator requires the use of aggcondition constructs. The syntax is as
follows:

type(aggregate(aggfunction,aggquery,aggvariable,aggresult).
aggcondition([count_class], child(+E, -C, -A), C, [’>’,’<’],[[2,3,4]]).
aggcondition([avg_class], child(+E, -C, -A), A, [’>’],[[5,10,15,20]]).
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This is the same as having

type(aggregate(aggfunction,aggquery,aggvariable,aggresult).
aggcondition([count,count_dist], child(+E, -C, -A), C, [’>’,’<’],[2,3,4]).
aggcondition([max,min,avg], child(+E, -C, -A), A, [’>’],[5,10,15,20]).

but will reduce induction times. Some remarks:

• These special aggcondition constructs can be combined with other ones.

• This efficient refinement operator can not be used with aggregate refinement(yes) (but it can be
used with aggregate lookahead(yes) or aggregate lookahead(no)).

Query sampling

Normally, when a query is refined, a whole set of possible candidate queries is generated by refining
the current query. Afterwards one query from these is selected. When query sampling is performed,
not all possible queries are generated, but only a random sample of them and the best one from this
sample is selected. By doing so, the amount of time spend on generating these queries, and also the
time spend on executing them to find the best one is largely reduced.

The user can indicate that query sampling needs to be performed, by means of

query sampling probability(prob).

prob is the fraction of the total number of queries that will be selected in the sample. It is either in
the range of 0 and 1 or it is sqrt, then the square root of the number of queries is taken.

If only one random query needs to be selected instead of a sample, one can use the following setting:

single query generation(yes).

Query sampling shows to be very beneficial when the feature space becomes very large, for instance
when aggregates and aggregate refinements are used.

4.2.4 General Settings

In this section we describe general settings which apply to all systems available in ACE. Settings which
are specific to one system can be found in the chapter describing that system.

• talking(t).
t is an integer between 0 and 4 (included). It controls the amount of output Tilde writes to the
screen. With t = 0, no output is written. With t = 4 all clauses that are tested are written to
the screen.
Default: 3.

• classes(c).
c is a list of class names; it defines the classes as they are to be used by Tilde (classify setting)
or Warmr. A class name is an atom.
Default: [pos,neg].
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• load(l).
l is either key or models. This setting tells ACE whether the data file is in key or models format.
Default: key.

• (expert) outerloop(s).
s is examples or queries. Specifies which implementation of Tilde or Warmr should be used.
These algorithms need to evaluate a set of queries on a set of examples; to this aim two nested
loops are used, one over queries and one over examples. The outerloop setting specifies which
loop should be the outermost one. This may influence the efficiency of the induction process.
Default: queries.

• (expert) huge(s).
s is either on or off. This setting tells ACE whether it should use its provisions to handle large
data sets. If it is on, the data file will never be loaded completely in main memory, only chunks
of it will be loaded at a time. The huge chunks package has to be loaded when this setting is
on.
Default: off.

• (expert) autoload packages(s).
s is either on or off. When on, packages will automatically be loaded when needed.
Default: off.

• (expert) leave out(q).
q is a query. Examples for which the query succeeds will not be included in the training set.
Default: false.

• use packs(p).
p is 0, 1 or 2. If the underlying Prolog engine is ilProlog, 0 indicates no packs will be used; 1
activates disjoint execution of packs; 2 activates packed execution. On other Prolog engines this
setting has no effect (packs are never used).
Default: 2.

4.2.5 Reading and Changing Settings

• set(setting, value).
changes an updatable setting. Updatable settings are those settings that consist of a single fact
(i.e., not warmode, rmode, constraint etc., which all may consist of multiple facts. For instance,
set(talking,4) sets the talking level to 4.

• show settings -- ss
shows the current settings.

• show language -- sl
shows the current language settings.

• load settings -- ls
(re)loads the settings file.

• set default settings -- sds
resets all settings to their default values.
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4.2.6 Loading Packages

Most of the systems available in ACE are defined in separate packages. If you want to use a certain
system, you have to load the corresponding package first. One exception to this rule are Tilde and
Warmr. These packages are auto-loaded and always available.

• use package(Name)
load package Name.

• show packages
shows information about the loaded packages.

• show package(Name)
shows information about package Name.
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Chapter 5

General predictive interface

The ACE system provides a common interface for the different prediction algorithms it incorporates.
Currently available predictive systems are Tilde, ICL, and RegRules.

5.1 Building predictive models in ACE

This section lists the commands that can be used at the prompt in ACE to build predictive models,
they are common for the different predictive systems that are described in the following chapters.
Each of these commands has a parameter Algo specifying which of the available algorithms is used
(tilde, icl, regrules).

• induce(Algo) -- i(Algo)
starts induction (possibly preceded by discretization), generating a predictive model according
to the provided algorithm Algo. Output is written to app.out. Exactly what is written to the
output file, is discussed in Section 11.6. With this command, induction is always performed on
the whole dataset minus the examples for which the query provided by leave out succeeds.

• nfold(Algo,n) -- nf(Algo,n)
nfold(Algo,n,s) -- nf(Algo,n,s)
performs an n-fold cross-validation. A random partition of n sets is first created, and subse-
quently n runs of the induction algorithm are performed. For each run a different set of the
partition has been left out of the training data, so training is done on the examples of n−1 sets,
and the remaining set is used as a test set. Output of these runs is written to files with fixed
names: uB1, uB2, . . . , uBn.

The optional s parameter specified the seed used to create the random partition. If the same seed
is used for different cross-validations with the same version of ACE, the same random partitions
will be used.

• leave one out from list(Algo,list ) -- loofl(Algo,list)
assumes a predicate testid to be available, on which cross-validation will be based. For each
constant c in list, the data set is partitioned in those examples where testid(c) succeeds (these
will form the test data), and those where it does not succeed (these will form the training set).
This gives rise to an l-fold cross-validation, with l the length of the list (assuming that in each
model testid succeeds for one constant only).

Output is written to files uLc, with c the constant from the list on which the run was based.

An example of where this command could be used, is the Mesh dataset [18], where cross-
validation is often done based on the 5 structures that appear in the data.

37
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5.2 General settings

• random validation set(R).
R is a number between 0 and 1. It specifies an approximate proportion of learning examples
that have to be set aside to be used as a validation set. Each individual learning example is
then randomly assigned to the training set (with probability 1−R) or to the validation set (with
probability R).
Default: 0.

• random test set(R).
R is a number between 0 and 1. It specifies an approximate proportion of learning examples that
have to be set aside to be used as a test set. Each individual learning example is then randomly
assigned to the training set (with probability 1−R) or to the test set (with probability R).
Default: 0.

• write predictions(List).
Write the predictions of the data sets specified in List (eg. training, testing, . . . ) to file named
app.prediction.x where x=training, testing, . . .
Default: [].

5.3 General output files

All output files are written in a directory named after the predictive algorithm used, so ./tilde/ for
Tilde, ./icl/ for ICL etc.

5.3.1 Detailed result files

The results of each run of a predictive algorithm are written to files. The filename is app.out, or
app.uBi for the i-th random n-fold cross-validation, or app.uLi for the i-th left out set.

The output of a run contains the following statistics:

• CPU-times for discretization and induction itself

• Model complexity, model accuracy on training set, validation set and test set (when applicable),
and model accuracy on all sets together are shown. For classification, accuracy is shown as a
proportion of correctly predicted instances; for regression, accuracy is shown as “relative error”
RE.

Extra output might be given depending on the specific prediction algorithm used. This is mentioned
in the output section of the appropriate algorithm.

5.3.2 Summary files

When performing cross-validations, ACE not only gives detailed reports on each run, but also generates
a summary of the whole cross-validation. This summary is written to a file called app.summary.x,
where x = uL or uB, depending on which kind of cross-validation is performed (this is consistent with
the names of the detailed output files).
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Classification

app.summary.x contains the average values of induction times, model complexities and predictive
accuracies of all the individual runs.

It also contains a contingency table of real vs. predicted classes. For this table, Cramer’s coefficient is
reported. This coefficient is defined as

V =

√
χ2

n(q − 1)

with

χ2 =
q∑

i=1

q∑
j=1

(xij − eij)2

eij

where

n is the total number of examples
xij is the number of examples in row i and column j
eij = ri·cj

n , the number of examples expected in row i and column j
ri is the total number of examples in row i
cj is the total number of examples in column j
q is the number of classes

While the χ2-statistic gives an idea of how significantly the prediction differs from random prediction,
V scales it to a number between 0 and 1 and can therefore be used as some sort of correlation
coefficient. For q = 2, V equals the classical correlation coefficient ϕ for 2 × 2-tables, i.e. for a table

A B
C D

, ϕ = AD−BC√
(A+B)(A+C)(B+D)(C+D)

.

Regression

app.summary.x contains the average induction time and model complexity of all the individual runs,
as well as the global (over all runs) relative error, Pearson’s correlation coefficient between real and
predicted values, the mean absolute error and the root mean squared error.

Given a set of n predicted values pi and corresponding actual values ai (and denoting their respective
means with p̄ and ā), relative error is defined as follows:

RE =
∑

(pi − ai)2∑
(ā− ai)2

i.e. it is the ratio of the mean squared error of the hypotheses over the mean squared error of a null
hypothesis always predicting the mean of the observed values.

Pearson’s correlation coefficient is defined as

r =
∑

(pi − p̄)(ai − ā)√∑
(pi − p̄)2

∑
(ai − ā)2

The mean absolute error and root mean squared error are defined as

MAE =
∑
|pi − ai|
n
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RMSE =

√∑
(pi − ai)2

n

5.4 Ensemble methods

5.4.1 Constructing ensemble models

ACE provides also some ensemble methods that can be used in combination with a specified basic
algorithm. Current available ensemble methods are majority voting, bagging [7], boosting [31] and
random forests [9]. To induce an ensemble model, the parameter Algo in the command is instantiated
with the appropriate ensemble method as follows:

• bagging(BasicAlgo, n): this performs n rounds of bagging with the specified basic algorithm.

• boosting(BasicAlgo, n): this performs n rounds of boosting with the specified basic algorithm.

• voting(BasicAlgo, n): this performs n rounds of the specified basic algorithm and performs
majority voting over the predictions of the different models.

As basic algorithm BasicAlgo one of the prediction algorithms can be used (tilde, icl, regrules).

First order random forests [40] can be induced by choosing bagging(tilde, n), with n the number of
trees in the forest, in the command and by using the setting query sample probability/1 with a
certain probability as parameter. This last setting is described in the paragraph ’Query sampling’ of
Section 4.2.3. At each node that is to be build it only takes a sample of the total number of queries
to select the best one from. This setting in combination with the bagging procedure gives random
forests.

5.4.2 Settings specific for ensemble methods

Settings for all ensemble methods

• write ensemble models(List).
List is a list of numbers specifying for which submodels of the entire ensemble output needs to
given. For each of these numbers seperate output files are generated. They should be smaller
than n, the number of trees in the ensemble. Let’s say you build an ensemble of 33 trees, and
List is [3, 11], then next to the output for 33 trees, it will also give output for the ensemble
consisting of the first 3 and 11 trees. This number will be in front of the extension of the output
file, eg. app.3out and app.11out. In that case the output for 33 trees will be just app.out.
Default: [].

• output options(optionlist ).
optionlist is a list that specifies what should be written to the output file, and in what format.
The user may wish to see a lot of output information, or only the most important things (e.g.
classification accuracy). This can be controlled with this setting. Most of these output options
are only relevant for the Tilde system and are discussed in the next chapter.
Options related to ensembles:

– all models: outputs next to statistics for the ensemble also statistics for each of the base
models in the output file



5.4. ENSEMBLE METHODS 41

Settings specific for bagging

• out of bag(op).
op = yes | no
When using bagging, out-of-bag error estimates [8] can be used to estimate the generalisation
errors. This removes the need for a set-aside test set or cross-validation. Out-of-bag error
estimation proceeds as follows: each tree is learned on a training set Di drawn with replacement
from the original training set D. For each example d in the original training set, the predictions
are aggregated only over those classifiers Ti for which Di does not contain d. This is the out-of-
bag classifier. The out-of-bag error estimate is then the error rate of the out-of-bag classifier on
the training set. Note that in each resampled training set, about one third of the instances are
left out (actually 1/e in the limit). As a result, out-of-bag estimates are based on combining only
about one third of the total number of classifiers in the ensemble. This means that they might
overestimate the error rate, certainly when a small number of trees is used in the ensemble.
This setting cannot be used in combination with n-fold cross-validation.
Default: no.
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Chapter 6

Tilde

Note: ACE 1.2.x comes with two versions of Tilde. The default is 3.0, which is the most recent version.
To use version 2.2, which was included in ACE 1.1.x, set tilde version(’2.2’).

6.1 Growing trees with Tilde

In order to build a decision tree using the Tilde algorithm, the parameter Algo of the commands
described in section 5.1 should be instantiated to tilde.

6.2 Settings specific for Tilde

Tilde has several modes of operation. We first discuss settings that are relevant for all modes, then
settings that are specific for certain modes.

6.2.1 Settings used for all modes of operation

• sampling strategy(s).
Tilde may use only a sample of the whole data set when evaluating tests in order to decide
which test should be put in a node of the tree. Once the test is put there, the whole data set will
be partitioned according to that test. s controls the sampling procedure. When s is fixed(n)
with n an integer greater than 0, Tilde uses a random sample of the data of at most size n.
When s is user(p), the user-defined predicate p/2 will be called with as first argument a list of
all currently relevant examples (together with weights) and as second argument a free variable,
which should be instantiated by p/2 to a sublist of the original list. This sublist represents the
sample. When s is none, the whole data set will always be used.
Default: fixed(1000).

• minimal cases(n).
This is the minimal number of examples that a leaf of the tree should cover.
Default: 2.

• output options(optionlist ).
optionlist is a list that specifies what should be written to the output file, and in what format.
The user may wish to see a lot of output information, or only the most important things (e.g.
classification accuracy). This can be controlled with this setting. A more detailed description is
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given in Section 6.3, where the output file is discussed.
Default: [c45,prolog].

• tilde mode(mode).
Mode is a constant representing a mode. Currently three modes are built-in in Tilde: classify,
regression and cluster.
Default: classify.

6.2.2 Settings specific for classification mode

• (expert) confidence level(cl).
cl is a number between 0 and 1, that is used in the post-pruning phase for estimating the
prediction error. This number is only relevant if C4.5’s post-pruning method is used.
Default: 0.25.

• (expert) prune rules(s).
s must be true or false. If s is true, the load setting is set to models and Tilde is in
classification mode, then a rule post-pruning algorithm will be run. This algorithm is still
experimental.
Default: false.

• accuracy(a).
a is a number between 0 and 1. If the majority class in a node has a relative frequency of at
least a, the node is made a leaf.
Default: 1.

• heuristic(heur).
where heur = gain or gainratio
This specifies the heuristic that is to be used. gainratio is C4.5’s default heuristic; it usually
yields better results than gain (see [35] for more information about these heuristics).
Default: gainratio.

• pruning(method).
where method = c45, c45 nosafepruning, none, vsb, bic, mdl, chi square(Alpha) or
randomisation(N,Alpha,Type)
This setting specifies the post-pruning algorithm that is to be used. c45 stands for C4.5’s
post-pruning method, which performs both error-based pruning and safe pruning (error-based
pruning uses an estimation of the error on unseen cases and prunes in such a way that this error
is minimized [35]; safe pruning or “collapsing” prunes subtrees in which all nodes have the same
majority class). c45 nosafepruning stands for error-based pruning without safe pruning. vsb
stands for “validation set based” pruning: a separate validation set is used to estimate the error
on unseen cases and pruning is done in such a way that it minimizes this estimate. bic stands
for pruning based on the Bayesian Information Criterion. mdl stands for pruning based on the
Minimum Description Length Principle. chi square(Alpha), with Alpha between 0 and 1 (e.g.
0.05), stands for pruning based on Bonferoni-corrected chi-square tests with the given alpha-
level. randomisation(N,Alpha,Type), with N a positive integer (e.g. 100) and Alpha between
0 and 1 (e.g. 0.05), stands for pruning based on randomisation tests with N randomisations and
with the given alpha-level (the advised Type is global).
Note that mdl and bic can only be used if the heuristic is gain. An experimental comparison of
most of the above pruning methods is given by Fierens et al. [30].
Default: c45

• stopping criterion(criterion).
where criterion = mincases, bic, mdl, chi square(Alpha) or randomisation(N,Alpha,Type)
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This setting specifies the stopping criterion used for the top-down induction. mincases stands
for using the minimal cases setting (see before) as a stopping criterion. This means that
refinement of a node is stopped if the node is pure or if there are no queries for that node that
satisfy the mimimal cases requirement. The stopping criteria bic, mdl, chi square(Alpha) and
randomisation(N,Alpha,Type) are the counterparts of the pruning criteria discussed above.
Note that this setting is to be used in conjunction with the setting pruning. For instance, if the
user wants to use the Bayesian Information Criterion to control the size of the tree, there are two
options. The first option is to use a stopping criterion by specifying stopping criterion(bic)
and pruning(none). The second option is to use postpruning by specifying pruning(bic) and
stopping criterion(mincases).
Default: mincases

• m estimate(method).
where method = none, laplace or m(M,Prior)
Determines how class-probabilities are computed; this affects only the output options c45 probab,
prolog probab and roc01. In general, the probability of a class ci in a leaf l is computed as
Ni,l+m pprior(ci)

Nl+m , with Ni,l the number of examples of class ci in l and Nl =
∑

iNi,l. The pa-
rameters m and pprior(ci) depend on the actual method used for m-estimation. The method
none stands for not using m-estimation, i.e. m = 0. The method laplace stands for Laplace
estimation, i.e. m = NbClasses and ppriori(ci) = 1

NbClasses . The most general method is
m(M,Prior), with M a positive number and Prior a probability distribution on the classes (e.g.
[neg:0.4,pos:0.6]). This corresponds to using m = M and pprior(ci) according to the prior
(the classes in the prior must be ordered alphabetically).
Default: none

6.2.3 Settings specific for clustering mode

• ftest(S).
ftest serves as a stopping criterion for clustering. If a set of examples is split into two subsets,
the quality of the split can be measured by looking at the sum of squares of distances of each
example in a set to the average of the set. The sum of squares of distances within the two
subsets (SS1 + SS2) is at most as large as the sum of squares of distances SS in the whole set.
To test whether a reduction in variance is significant, an F-test can be performed. S indicates
the significance level that will be used for the test. S can have a value of 1.0, 0.1, 0.05 or 0.01.
Lower values causes the tree building to stop earlier. 1.0 disables this stopping criterion.
Default: 0.05.

• heuristic(heur ).
heur = eucl | eucl(distance)
“Heuristic” actually means “distance” in the clustering context. Currently only one distance
measure is implemented: euclidean distance. This is a propositional distance measure. Each
example is assigned a number of coordinates by the euclid specification (see below). The
euclidean distance between these coordinates is also the dissimilarity of two examples. The
clustering heuristic maximizes inter-cluster-distances and minimizes intra-cluster-distances.
The difference between eucl and eucl(distance) is that the former heuristic minimizes intra-
cluster variation whereas the latter maximizes the distance between cluster centers. The names
of the heuristics, admittedly, are badly chosen.
Default: eucl.

• euclid(Q, X).
X should be a variables occurring in Q. This setting indicates that X is one of the coordinates
of an example to be used for computation of the euclidean distance, where X is to be computed
by executing the query Q for the example.
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• assign class(L, C) :- ...
The predicate assign class defines how a class can be assigned to a cluster of examples. The
predicate will be called by Tilde with as first argument L a list of examples and as second
argument C a free variable. The user should define the predicate so that C is instantiated to
a class constant. In the definition of this predicate, the user can make use of the predicate
query model(Model, Query) which allows to extract relevant information from the models.

6.2.4 Settings specific for regression mode

• ftest(S).
ftest serves as a stopping criterion. If a set of examples is split into two subsets, the quality of
the split can be measured by looking at the sum of squares of distances of each example in a set
to the average of the set. The sum of squares of distances within the two subsets (SS1 + SS2)
is at most as large as the sum of squares of distances SS in the whole set. To test whether a
reduction in variance is significant, an F-test can be performed. S indicates the significance level
that will be used for the test. S can have a value of 1.0, 0.1, 0.05 or 0.01. Lower values causes
the tree building to stop earlier. 1.0 disables this stopping criterion.
Default: 0.05.

• pruning(method).
where method = vsb or none
vsb stands for “validation set based” pruning: a separate validation set is used to estimate the
error on unseen cases; pruning is done in such a way that it minimizes this estimate.
Note that in classification mode several other options are available next to vsb, but when used
in regression mode these options all correspond to no pruning.

• multiscore(L).
L is a (possibly empty) list, or off. The multiscore attribute is useful when multivariate regres-
sion is performed (i.e. predicting multiple variables). When multiscore is not off, not only the
global relative error (over all predicted variables) will be reported, but also the relative error
of each individual variable (see also section “Output files”). Some of these variables may be
auxiliary variables, numeric variables that are actually derived from nominal variables (e.g. a
dichotomous variable could be represented by 0 or 1). For such variables one might want to
see the accuracy of the prediction rather than its relative error. This can be performed in the
following manner.

L, except when off, is a list of couples (X,Y ). X is typically of the form predicted(list),
with list a list of the variables that are predicted by the regression tree1. Y is a query through
which Tilde can decide for a specific example whether some prediction is correct or not. An
accuracy (correct predictions / total predictions) will be computed on the basis of this, and this
accuracy will be reported.
Default: off.

Example 20. Suppose we want to perform regression on three variables length, weight and sex. Sex
can have two symbolic values (male or female) but has been represented as 0 or 1 because the regression
algorithm wants to see numbers, not symbolic values.

If the settings file contains the setting

multiscore([]).

then the output will contain relative errors for the prediction of all three variables weight, length and
sex. For instance, one output line could be:

1The predicate predicted is predefined in Tilde.
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pruned_testing_relist: [0.5 = 4.6/9.2, 0.4 = 4.2/10.5, 0.25=0.1/0.4]

which means that the predictions for the test set, using the pruned tree, had relative error of 0.5, 0.4
and 0.25 for length, weight and sex respectively.

As a relative error of 0.25 may be rather hard to interpret, the user may want to use the following
multiscore list:

multiscore([ (predicted([L,W,S]), (S>0.5 -> male; female)) ]).

Note that this is a list with one element (a couple). The meaning of the couple is the following: if
Tilde predicts a value for S (i.e. the sex variable), it should consider the prediction correct if the
query

(S>0.5 -> male; female)

succeeds, and incorrect otherwise. The query is a Prolog if-then-else construct: if S > 0.5 then male
is tested, otherwise female. (It is assumed here that the sex of the persons is indeed indicated in the
examples by a fact male or female.) In other words: the prediction is correct if S > 0.5 and the person
is male, or if S ≤ 0.5 and the person is female.

Using this information, Tilde can compute how many examples of the test set were predicted correctly.

pruned_testing_relist: [0.5 = 4.6/9.2, 0.4 = 4.2/10.5, 0.25=0.6125/0.25]
pruned_testing_multiscore: [0.857 = 12/14]

This makes clear that for 14 test cases, the sex was predicted correctly 12 times, which yields an
accuracy of 0.857.

6.2.5 Settings specific for model tree mode

Tilde can also be used to produce model trees, i.e., regression trees where the leaves can contain
linear models instead of constants [44]. A different heuristic function is used: splits are chosen to
minimize residual (i.e., after fitting a linear regression model) standard deviation. Model trees should
only be used when the multiscore setting is off. The setting that produces model trees is
tilde test eval model(slr). (slr = simple linear regression, the default is std)

The resulting model tree may contain, next to regular splitting nodes, regression nodes. These do
not split the data (and therefore have an artificial right branch “no: [0.0] 0 0.0”), but only serve to
introduce a numeric attribute in the linear models in the leaves of the subtree. These regression nodes
are always in the form of a min or max aggregate, such that a unique numeric value is obtained in
case the attribute is multi-valued.

The model stored in a leaf is either a numeric constant, or a linear regression model. The latter looks
as follows: [coeff ∗ attr + coeff ∗ attr + ... + intercept]. The attributes are the numeric attributes
(split and regression attributes) occurring on the path from the root down to the leaf. They look as
follows:

attr([concatenation of queries on the path higher in the tree],[attribute query],
[common variables between these two], actual variable denoting the attribute,
min/max in case of multivaluedness, default value in case of emptyness).
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For example, an attribute might look as follows

attr([atom(AtID1,carbon,Charge1),bond(AtID1,AtID2,BondType)],
[atom(AtID2,Type2,Charge2)],[AtID2],Charge2,max,0.7).

De corresponding value is obtained by first looking for all atoms AtID2 that share a bond with a
carbon atom. For each unique AtID2 instantiation the value for Charge2 is taken. If this results in
multiple values, the maximum is taken; if it results in no values, the default value of 0.7 is taken.

6.3 Specific output for Tilde

For Tilde extra information can be written in the standard output files according to several output
options. These output options are specified by means of

output options(list ).

with list a list containing one or more of the following constants:

• c45
the pruned tree is written in C4.5-like output format, i.e. the tree’s root is to the left, yes and
no branches are drawn, and for each leaf the total number of examples covered, and the number
of examples correctly predicted are shown between brackets.

• c45c
writes the safely-pruned version of the original tree, in the same format as above.

• c45e
writes the pruned tree in the same format as c45, but also writes for each leaf the list of examples
that are covered by that leaf.

• c45ce
writes the safely-pruned version of the original tree with examples shown

• c45 probab
only available in classification mode. Same as c45 except that now the probabilities of the classes
are shown in the leaves.

• prolog
writes the Prolog program corresponding to the pruned tree

• prolog probab
only available in classification mode. Same as prolog except that now the probabilities of the
classes are shown in the leaves.

• ldt term
writes the tree as a prolog-readable term, using the following grammar: A Tree is written as
ldt(Node), a Node is either written as inode(Test,Left,Right) where Left and Right are Trees
and Test is written as test(Conjunction), or a Node is written as leaf(LeafModel).

• roc01
writes the ROC-curve for the predictions made and computes the area under the ROC-curve
(AUC). In case the number of classes exceeds two, the ‘expected AUC’ is computed, this is the
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weighted average of the AUC’s obtained by using in turn each of the classes as positive and
all others as negative. When used in regression mode, examples are considered positive if their
target is greater than 0.5.

• likelihood
computes the “conditional log-likelihood” of the examples (i.e. log2 of the probability of the
classes of the examples given the rest of the examples). Only available in classification mode.

• (expert) lp
writes a logic program corresponding to the pruned tree. Only works when the load setting is
set to models.

• (expert) elaborate
writes a lot of information to the output file that is mainly useful for debugging purposes.

By default, output options([c45,prolog]) is assumed.

Some other output files are generated by Tilde that may be of use.

• The file app.progress is updated by Tilde each time a leaf of the tree has been created (i.e. it
is continuously updated during the induction process). It contains the number of leaves created
up till now, as well as the number of examples that have been covered by these leaves (both as
an absolute number and as a percentage of the total number of examples). As such, it gives the
user some idea of how far the induction process has proceeded.

• The file app.ptree is updated by Tilde each time a test or leaf is added to the tree. It contains
the partial tree induced up till now, in c45-format.

• The file pruned ct contains a couple (actual value, predicted value) for each example in the
dataset. These data are used during crossvalidation experiments for computing the contingency
table (classification) or correlation coefficient (regression and clustering), but can also be of
interest to the user for performing other tests (e.g., McNemar’s).
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Chapter 7

The ICL system

Inductive Classification Logic (ICL in short) is a ILP learning system that learns first order logic
formulae from examples which belong to two or more classes. The learned theory can be used to
classify unseen examples. Examples are viewed as (Herbrand) interpretations. These are assumed be
specified completely (we also say that we learn from closed examples). So ICL performs discriminating
induction from closed examples.

7.1 Building rule sets with ICL

In order to run ICL one extra file is needed next to the common input files:

• L file: app.l is the language file. ICL does not support the rmodes. Defining a DLAB bias is
the only way to provide a language bias to this system. Section 7.3 provides an example of how
to define this language bias.

In order to build a rule set using the ICL algorithm, the setting file must countain

use_package(icl).

The parameter Algo of the commands described in section 5.1 should be instantiated to icl as follows:

> induce(icl)

7.2 Settings specific for ICL

• icl multi(R), where R must be on or off (default: off).

• maxhead(N), where N must be a positive number (default: 10). The maxhead setting specifies
the maximum number of literals in head of clause (not for DNF).

• maxbody(N), where N must be a positive number (default: 10). The maxhead setting specifies
the maximum number of literals in body of clause.
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• simplify(R), where R must be on or off (default: on). The simplify setting can be used to
enable rule simplification. ICL uses the smartcall transformation [37] to simplify rules. Set this
setting to off if the rules are expected to be very relational. Set it to on for attribute-value
applications and for applications with several non-linked parts.

• multi prune(R), where R must be on or off (default: on). Multi prune is used to prune rules for
seperate classes when merging into a multi-class theory. Set it to off for no pruning of learned
rules per class and to on to remove rules for a class, which predict another class.

• multi test(R), where R must be either cn2, bayes or bayes old (default: bayes). Specify how
a multi-theory should be tested. Set to cn2 for using the same procedure as in cn2 (adding
absolute values) and to bayes for applying naive bayes for classification.

• language init(R), where R must be either local or global (default: global). This setting
specifies when to to initialize the language. Set to global for initialisation at beginning of the
ICL search. Set to local for initialisation at each covering step. This setting can be used for
dlab queries with discretization: global/local discretization.

• icl heuristic(X), where X must be either laplace, m estimate or m estimate(M) (default:
m estimate).

• significance level(R), where R must be either 0, 0.995, 0.99, 0.98, 0.95, 0.90, 0.80 (default:
0.90). This setting specifies the onfidence level (as percentage) for the significance test.

• min coverage(N), where N must be a strict positive number (default: 1).

• min accuracy(R), where R must be a positive real number ≤ 1 (default: 0.0). This setting
specifies the minimal accuracy for each individual rule.

• beam size(N), where N must be a strict positive number (default: 5). This setting specifies the
maximum number of rules to be kept in the beam.

• cn2 mode(R), where R must be on or off (default: off). ICL tries to imitate cn2 as good as
possible if this setting is switched on (only changes things which cannot be changed with the
settings) heuristic(laplace), significance level(0.0)).

• icl heuristic wra(R), where R must be yes - for weighted relative accuracy - or no (default:
no). Specifies if weighted relative accuracy should be used as heuristic (by Peter Flach).

• beam max internal(V), where V must be an integer, >0 (default: 1). In a ICL beam search, the
beam is a list of lists. The first list is maximum beam size long, each internal list is maximum
beam max internal long.

7.3 An Example Application

This example has been used in a tutorial “Three companions for first order data mining” [12]. Imagine
that you have just been hired by a professional seminar organizer (PSO) in order to discover new
knowledge about the activities of the PSO that is to be used for commercial purposes. PSO also
informs you that they have a database about past activities (Figure 7.1).

It contains information about participants in a recent Seminar on Data Mining. Note that information
about each person is contained in multiple tables of the database. To obtain a set of examples for
ICL, we partition the the database into examples. Global information (like course table) is put in the
background.

We would like to find out what type of people attend the parties at our seminar (can be useful in
order to set the price of the party as well as to decide upon the activities at parties).
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Figure 7.1: The PSO database.

7.3.1 The background knowledge (BG file)

This file defines all the additional information on the domain (definition of new predicates) that can
be used in the language (.l) file to construct the rules.

job(_J):-
participant(_J, _, _, _).

company(_C):-
participant(_, _C, _, _).

party(_P):-
participant(_, _, _P, _).

company_type(_T):-
company(_C),
company(_C, _T).

course_len(_C, _L):-
course(_C, _L, _).

course_type(_C, _T):-
course(_C, _, _T).

company(jvt,commercial).
company(scuf,university).
company(ucro,university).
course(cso,2,introductory).
course(erm,3,introductory).
course(so2,4,introductory).
course(srw,3,advanced).

7.3.2 The example data (KB file)

We only show part of the example data. All input files for this application are available from the ACE
web-site. In ICL, the knowledge base should be used in the models format (see Section ??).

begin(model(adams)).
participant(researcher,scuf,no,23).
subscription(erm).
subscription(so2).
subscription(srw).
end(model(adams)).

begin(model(blake)).
participant(president,jvt,yes,5).
subscription(cso).
subscription(erm).
end(model(blake)).
....
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7.3.3 The language file

The language file (L file) contains these DLAB specifications:

dlab_template(’
0-2: [ job(c_job),

company_type(c_company_type),
subscription(_S),
course_len(_S,c_course_len),
course_type(_S,c_course_type)

]
<--

0-len: [ job(c_job),
company_type(c_company_type),
subscription(_S),
course_len(_S,c_course_len),
course_type(_S,c_course_type)

]
’).

dlab_variable(c_job, 1-1, [researcher,manager,president]).
dlab_variable(c_company_type, 1-1, [commercial,university]).
dlab_variable(c_course_len, 1-1, [2,3,4]).
dlab_variable(c_course_type, 1-1, [introductory,advanced]).

In general, a DLAB bias specifies the space of valid conjunctions of literals (if you choose the DNF
setting) or disjunctions of literals (if you choose the CNF setting) that ICL searches for. A DLAB
bias is composed of a dlab template and of the specification of some dlab variable. Each dlab template
is written as HeadTemplate← BodyTemplate where HeadTemplate and BodyTemplate are DLAB
terms. A DLAB term specifies which literals and arguments should be used in the hypotheses. A
term is either an atom or a formula of the form Min −Max : L, where L is a list of DLAB terms
and where Min and Max are two integers such that 0 ≤ Min ≤ Max ≤ size(L). The system will
then choose recursively every subsets of L with size between Min and Max.

In the above example, the left part of the template will consist in any subset of size 0, 1 or 2 of the
set [job(c_job),company_type(c_company_type),subscription(_S),
course_len(_S,c_course_len),course_type(_S,c_course_type)] and the right part, of any sub-

set of size 0, 1, 2, 3, 4 or 5 (there are 5 elements in the set and len is a keyword to specify the maximum
length) of the same set. To choose exactly one element in the set L, you must use the setting 1−1 : L.

A dlab variable allows to define shortcuts for frequently occurring parts (for example,
1-1:[researcher,manager,president]).

For more information about this bias, the user should refer to [13, 34].

7.3.4 The settings file

The setting file should contain all the settings required in Section in addition to any other ICL-specific
optional settings the user might be interested in.

use_package(icl).
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predict([party_no, party_yes]).
...

7.3.5 The output file

In the setting file, the user has specified to learn rules for all target attributes, so the system will then
induce a set of rules for party no as well as for party yes.

ace-registration> induce(icl)

ICL gives as output (in the app.out file) two rules for the default DNF setting:

rule(party_yes, [[2,0],[1,3]], company_type(commercial)),
rule(party_no, [[0,3],[3,0]], subscription(A),course_len(A,4),\+company_type(commercial))

[[2, 0], [1, 3]] gives in the first list, the number of examples of each class covered by this rule and in the
second one, the number of examples of each class not covered by this rule.



56 CHAPTER 7. THE ICL SYSTEM



Chapter 8

The Warmr System

8.1 The Warmr Algorithm

Warmr is a general purpose Inductive Logic Programming (ILP) data mining algorithm [16, 17].
It can discover knowledge in structured data, where patterns reflect one-to-many and many-to-many
relationships in the data. The patterns discovered by Warmr are expressed as Prolog queries. Given a
language bias L (Section 4.2.2), a set of examples E, and a minimum support threshold minfreq ∈ R+,
Warmr finds all queries in L that cover at least minfreq · |E| examples.

Warmr uses the efficient level-wise search known from the Apriori algorithm [1]. This allows it to be
used on very large databases. Figure 8.1 contains a high-level description of the Warmr algorithm.
Each iteration of the main loop corresponds to a certain level k of the level-wise search through the
pattern space (Figure 8.2). For each level, there are two phases: a candidate generation phase and a
candidate evaluation phase. For level k = 0, the set of candidate patterns Ck is initialized to contain
only the query root(X1, . . . , Xm1) (with root the root predicate of the language bias). During the
candidate evaluation phase, the frequency of each candidate query is computed by counting the number
of covered examples in E. Queries that are found frequent are added to the set of frequent queries Fk,
and infrequent queries are added to the infrequent query set I. In the second phase, the candidates
for the next level are generated. Each refinement of a frequent query is a new candidate unless certain
constraints are violated (see further). After all candidates have been generated, the main loop enters
the next level. The algorithm terminates if the candidate set is empty and the return value is the set
of frequent queries for each level.

Three constraints (lines 9-11) in the query generation phase ensure that each query is generated only
once and that queries that can be proved to be infrequent are not generated. The first two tests check
if the new candidate q′ is equivalent to its parent query q or to one of the preceding candidates. The
last test checks if the candidate is a specialization of an infrequent query; this implies that the new
candidate must also be infrequent.

The level-wise approach has two crucial useful properties. First, the database is scanned at most k
times, where k is the maximum level (size) of a frequent pattern; all candidates of a level are tested
in single database pass. This is an important factor when mining large databases. Second, the time
complexity is linear int the number of examples.

More details about the Warmr algorithm can be found in [15].
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algorithm Warmr(E, minfreq)
1 k := 0; C0 := { root(X1, . . . , Xm1) }; I := ∅
2 while Ck 6= ∅
3 S := 0
4 for each q ∈ Ck, e ∈ E
5 if covers(q, e) then increment S[q]
6 Fk := {q ∈ Ck | S[q] ≥ minfreq · |E|}
7 I := I ∪ (Ck − Fk); Ck+1 = ∅
8 for each q ∈ Fk, q′ ∈ ρ(q)
9 if not ( q ∼ q′
10 or ∃ q′′ ∈ Ck+1, q

′′ ∼ q′
11 or ∃ q′′ ∈ I, q′′ � q′ )
12 then Ck+1 := Ck+1 ∪ {q′}
13 k := k + 1
14 return

⋃
Fk

Figure 8.1: The Warmr algorithm returns all queries in the search space that cover at least a fraction
minfreq of the given examples E. (The refinement operator ρ(q) returns the set of refinements of the
given query q that are in the language bias L.)

8.2 An Example Application

Consider again the Machines example from Chapter 3 and suppose that we have the following settings
file:

warmode_key(machine(-machine)).

minfreq(0.2).

typed_language(yes).
type(worn(machine,comp)).

rmode(worn(+M,#)).

The first setting warmode_key(machine(-machine)) tells Warmr that it has to count machines. As
a result, each query will start with the root predicate machine(M). The next setting minfreq(0.2)
sets the minimum frequency threshold. In this case only queries covering at least 20% of the examples
will be returned.

Suppose that the constants generated for worn/2 are chain, engine, control_unit, gear, and wheel,
then the search tree traversed by Warmr is shown in Figure 8.2.

To start the Warmr algorithm, we use the following command.

1. warmr -- w
starts the discovery process.

The frequent queries are written to the file mach.freq_queries.out in the warmr3 folder. We will
discuss the content of this file in the following section. The file mach.freq_packs.out essentially
contains the same information, but in a different format: in this file, the queries are represented in a
trie-structure known as a query-pack [6].
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machine(M)

machine(M),
worn(M,chain)

machine(M),
worn(M,engine)

...
machine(M),
worn(M,gear)

...

... ... ... ... ... ...

machine(M),
worn(M,gear),
worn(M,chain)

machine(M),
worn(M,gear),
worn(M,engine)

...

... ... ...
machine(M),
worn(M,gear),
worn(M,engine),
worn(M,chain)

...

Figure 8.2: The search-tree for the Machines (Chapter 3) data set. (Assuming constant generation is
used for the second argument of worn/2.)

8.2.1 The Frequent Queries

Warmr writes the frequent queries to the file app.freq_queries.out, with app the name of the
application. This file can contain the following facts.

• sample_size(S): S is the total number of examples |E|.

• min_rel_freq(RF): RF is the minimal frequency (i.e., the minfreq setting)

• min_abs_freq(AF): AF is minfreq · |E|.

• level(L): indicates that Warmr enters level L.

• c_counter(L,C): indicates that C candidates were generated at level L.

• f_counter(L,F): indicates that F frequent queries were found at level L.

• freq(L,I,Q,F): query Q is the Ith frequent query found at level L (its frequency is F).

Consider again the Machines example. The frequent queries for this example are the following.

sample_size(15.0).
min_rel_freq(0.2).
min_abs_freq(3.0).

level(1).
freq(1,1,[machine(A)],1.0).
c_counter(1,1).
f_counter(1,1).

level(2).
freq(2,1,[machine(A),worn(A,chain)],0.333).
freq(2,2,[machine(A),worn(A,engine)],0.333).
freq(2,3,[machine(A),worn(A,gear)],0.4).
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freq(2,4,[machine(A),worn(A,wheel)],0.4).
c_counter(2,5).
f_counter(2,4).

level(3).
freq(3,1,[machine(A),worn(A,chain),worn(A,gear)],0.2).
freq(3,2,[machine(A),worn(A,chain),worn(A,wheel)],0.2).
freq(3,3,[machine(A),worn(A,gear),worn(A,wheel)],0.2).
c_counter(3,6).
f_counter(3,3).

level(4).
c_counter(4,1).
f_counter(4,0).

In this case, the data set contains 15 examples and the minimum frequency threshold was set to 20%,
meaning that a query is frequent if it covers at least 3 examples. At the second level, 4 frequent
queries were found (the query machine(A),worn(A,control_unit) covers only 2 examples and is not
frequent). At the third level, 3 frequent queries were found and at the fourth level, no frequent queries
were found.

8.3 Generating Rules

Warmr can generate two types of rules: query extensions and Horn clauses. We first discuss query
extensions and after that Horn clauses.

8.3.1 Generating Query Extensions

A query extension is defined as follows.

Definition 8.1 (Query extension). A query extension is an implication of the form ∀X1, . . . , Xm :
∃(b1∧ . . .∧bn)→ ∃(b1∧ . . .∧bn∧h), with X1, . . . , Xm the key variables introduced by the root predicate,
h the head of the query extension, and b1 ∧ . . .∧ bn the body of the query extension. A query-extension
can also be written as b1 ∧ . . . ∧ bn  h.

For example,

machine(M),worn(M,chain)  worn(M,gear)

is the query extension (M is the key variable)

∀ M: (machine(M) ∧ worn(M,chain) → machine(M) ∧ worn(M,chain) ∧ worn(M,gear))

and should be read as: for all machines A it holds that if the machine has a worn chain, it will also
have a worn gear. Note that this query extension is very similar to a propositional association rule.

It becomes more difficult if the body of the query extension introduces non-key variables. Consider
for example a Bongard problem [14]. In a Bongard problem, each example is a picture containing
geometrical objects, such as triangles, squares and circles.

In this example,
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bongard(B),triangle(B,T)  orientation(B,T,up)

is the query extension

∀ B: (∃ T: bongard(B) ∧ triangle(B,T) →
∃ T: bongard(B) ∧ triangle(B,T) ∧ orientation(B,T,up))

and should be read as: for all Bongard pictures B it holds that if the picture contains a triangle, that
it will also contain a triangle pointing upwards. Because the variable T is existentially quantified, it is
sufficient that there is one triangle in the picture that points upwards, i.e., the query extension does
not say that all triangles in the picture should point upwards.

Similar to association rules, the interpretation of the query extension can be changed by adding a
confidence and support parameter, which are defined as follows.

support(b1 ∧ . . . ∧ bn  h) = freq(∃(b1 ∧ . . . ∧ bn ∧ h)) (8.1)

confidence(b1 ∧ . . . ∧ bn  h) =
freq(∃(b1 ∧ . . . ∧ bn ∧ h))

freq(∃(b1 ∧ . . . ∧ bn))
(8.2)

Consider again machine(M),worn(M,chain)  worn(M,gear). Because

freq(machine(M),worn(M,chain)) = 0.333

and

freq(machine(M),worn(M,chain),worn(M,gear)) = 0.2,

this query extension has a support of 0.2 and a confidence of 0.2/0.333 = 0.6.

To generate query extensions with Warmr, add the following settings to the settings file:

warmr_assoc([warmr_rules,
warmr_rules_min_confidence(0.4),
warmr_rules_min_support(0.2)]).

warmr_assoc_output_options([assoc_pred]).

With in this case 0.4 as minimum confidence threshold and 0.2 as minimum support threshold for the
generated query extensions. The output is written to the file mach.rules_assoc_pred.out in the
folder warmr3. In this example, it will contain the following rules:

rules(([worn(A,gear)]:-[machine(A),worn(A,chain)]),
bodyfreq(0.333),sup(0.2),conf(0.6),lift(none)).

rules(([worn(A,wheel)]:-[machine(A),worn(A,chain)]),
bodyfreq(0.333),sup(0.2),conf(0.6),lift(none)).

rules(([worn(A,wheel)]:-[machine(A),worn(A,gear)]),
bodyfreq(0.4),sup(0.2),conf(0.5),lift(none)).
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8.3.2 Generating Horn Clauses

Warmr can also generate Horn clauses. In this case, all variables in the head are universially quan-
tified. Consider again the Bongard example.

bongard(B),triangle(B,T) → orientation(B,T,up)

In this case, also T is universially quantified, meaning that for all pictures B and all objects T that
point upwards, it holds that T is a triangle.

To generate Horn clauses with Warmr, add the following settings to the settings file:

warmr_assoc([horn_clauses,
assoc_min_confidence(0.4),
assoc_min_support(0.2)]).

warmr_valid_func(assoc_std).
warmr_assoc_output_options([assoc_pred]).

This results in the following Horn clauses:

assoc(([worn(A,gear)]:-[machine(A)]),
bodyfreq(1.0),sup(0.4),conf(0.4),lift(none)).

assoc(([worn(A,wheel)]:-[machine(A)]),
bodyfreq(1.0),sup(0.4),conf(0.4),lift(none)).

assoc(([worn(A,engine)]:-[machine(A),worn(A,chain)]),
bodyfreq(0.33333),sup(0.13333),conf(0.4),lift(none)).

assoc(([worn(A,chain)]:-[machine(A),worn(A,gear)]),
bodyfreq(0.4),sup(0.2),conf(0.5),lift(none)).

assoc(([worn(A,wheel)]:-[machine(A),worn(A,gear)]),
bodyfreq(0.4),sup(0.2),conf(0.5),lift(none)).

assoc(([worn(A,chain)]:-[machine(A),worn(A,wheel)]),
bodyfreq(0.4),sup(0.2),conf(0.5),lift(none)).

assoc(([worn(A,chain)]:-[machine(A),worn(A,gear),worn(A,wheel)]),
bodyfreq(0.2),sup(0.13333),conf(0.66667),lift(none)).

8.4 Commands

This section presents an overview of all commands available in a Warmr session.

• warmr – w
Start the Warmr discovery process

• generate arff – gen arff
Generate a Weka .arff file, which indicates for every example if the patterns in FreqFile (as
feature) hold or not

• get warmr frequent(ResultVar) – gwf(ResultVar)
starts the Warmr discovery process and returns the resulting queries in ResultVar
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8.5 Settings

This section describes the settings supported by Warmr.

• minfreq(R), where R must be a positive real number ≤ 1 (default: 0.01). This setting specifies
the minimum frequency threshold.

• warmr maxdepth(T), where T should be an integer (default: 100). This setting specifies the
maximum search depth for the level-wise search carried out by Warmr.

• warmr batch size(T), where T should be an integer (default: 50000). If the number of candi-
date patterns is too large to fit in memory, then candidate queries can be generated and tested
in batches. This setting specifies the size of a query batch.

• warmr infreq spec level(T), where T should be an integer (default: inf). Warmr by default
keeps a list of infrequent queries. However, testing each query against all infrequent queries can
be expensive time-wise and storing all infrequent queries can also consume too much memory.
Using this setting, one can make Warmr only store infrequent queries up to a certain level.

• warmr output options(T), where T should be a list of options: freq queries, freq packs, ...
(default: [freq queries, freq packs, show query index]). Warmr writes its output to the
folder warmr3. Using this setting, one can control which output files are generated by Warmr.

• warmr valid func(T), where T name of the set of tests done by the validation function (default:
std meta). Warmr has several implementations of the validation function, i.e., the function that
performs the three tests on each candidate (lines 9-11 of the pseudo algorithm). The default,
std meta, should be ok in most cases. See “J. Ramon, and J. Struyf, Efficient theta-subsumption
of sets of patterns, Annual Machine Learning Conference of Belgium and the Netherlands (Bene-
learn 2004), pp. 95-102, 2004”.

• warmr assoc(T), where T must be off or a list of options (default: off). This setting should be
used to turn association rule generation on. The argument of this setting is a list of options.

– Include warmr rules to generate query extensions, in combination with:

– warmr rules min confidence(0.4)

– warmr rules min support(0.2)

– Include horn clauses to generate Horn Clauses, in combination with:

– assoc min confidence(0.4)

– assoc min support(0.2)

• warmr assoc output options(T), where T should be a list of options: queries, packs, ... (de-
fault: [queries, show query index]). Setting used to generate query-extensions and Horn
Clauses. See discussion in Section 8.3.2 and Section 8.3.1.
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Chapter 9

The RRL system

The RRL system implemented in ACE is a Q-learning system that uses relational function approx-
imation for both the Q-function and the policy. It explores a user defined world through stochastic
(Boltzmann-driven) action selection and an SMDP-version of the Bellman equations to generate learn-
ing examples for the Q-function approximation. A high-level overview of the algorithm is shown in
Figure 9.1, more information can be found in e.g. [20].

Several relational function approximators are included in the ACE system, such as (among others) an
incremental tree-builder and instance based regression. See Section 10 for more information on the
available systems and how to use them.

algorithm RRL

1 initialize the Q-function hypothesis Q̂0

2 e← 0
3 repeat {for each episode}
4 Examples← ∅
5 generate a starting state s0
6 i← 0
7 repeat {for each step of episode}
8 choose ai for si using a policy derived from the current hypothesis Q̂e

9 take action ai, observe ri and si+1

10 i← i+ 1
11 until si is terminal
12 for j = i− 1 to 0 do
13 generate example x = (sj , aj , q̂j) where q̂j ← rj + γmaxaQ̂e(sj+1, a)
14 Examples← Examples ∪ {x}
15 end for
16 Update Q̂e using Examples and a relational regression

algorithm to produce Q̂e+1

17 e← e+ 1
18 until no more episodes

Figure 9.1: The Relational Reinforcement Learning Algorithm
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9.1 RRL input files

The input files for RRL are the same as used for other applications in the ACE system. The .kb-file is
however not used (and therefore not required) as the RRL system generates its own learning examples
through interaction with its environment.

The RRL system does require the user to supply an environment, which can be defined in the back-
ground file, i.e., the .bg-file. (It is however common practice, cfr. the examples included with the
ACE system, to describe the environment in a .env file and load this file from the .bg file with the
:-[’blocks.env’]. statement.

9.1.1 Defining the environment

RRL interacts with its environments through a number of PROLOG predicates that have to be
implemented by the user:

rrl env init/0 Allows the user to initialize the environment (e.g. create data-structures) if needed.
This predicate will be called at the start of an experiment and between each of the experiments
when using the mrrl/1 command, see Section 9.2).

rrl env cleanup/0 Complimentary with the previous predicate, this predicate is called at the end of
each experiment.

rrl env worldType/2 RRL allows the user to vary the environment in which the agent is trained
during one experiment. This allows the user to create a policy which works on a set of related
environments. This predicate is called before each learning or testing episode is called to allow
the definition of a world-type. This world-type is then used as the first argument in all the
predicates below. The first (input) argument of rrl env worldType/2 is either the number of
the current episode for normal learning episodes, the term ‘test’ for testing episodes or the
term ‘teacher’ for guided episodes (See Section 9.1.2), the second (output) argument is the
user-defined world-type. (Defining this predicate is not required. If this predicate fails, the first
argument in the predicates below will be a free variable.)

rrl env beginstate/2 This predicate is called at the start of each episode. The first (input) argument
is the world-type the second argument should define a/the starting state for the given world-type.

rrl env possibleActions/2 This predicate is called for each encountered state. The first argument
is again the world-type, the second is the state under consideration. The predicate should return
a list of actions that can be applied in that state as the third argument.

rrl env apply/5 This predicate is called when RRL has decided to take an action. The first argument
is the world-type as usual, the second argument is the state from which the action will be executed
and the third is the chosen action. The two output arguments are the resulting state as the fourth
argument and the resulting reward as the fifth.

rrl env stopcondition/2 This predicate is called for each encountered state and should succeed
when the end of an episode is reached. The first argument is the world-type, the second is the
state under consideration. For learning episodes, this is when the encountered state-action pairs
are translated into learning episodes, for testing episodes this is when the episode is evaluated.

rrl env absorbingstate/2 This predicate is called for all states for which rrl env stopcondition/2
succeeds. States for which this predicate succeeds get a state-value of 0 (and thus a maximum
Q-value of 0) during the generation of learning examples.



9.2. COMMANDS 67

rrl env equal/2 This predicate should succeed when the two states supplied as input arguments can
be considered equal in the environment. This can be useful when semantically equal states are
not always guaranteed to be syntactically equal as well.

9.1.2 Using guidance

The RRL system also supports the use of guidance. More specifically, a user-defined policy can be used
to create traces of execution of a “reasonable policy” that helps the learning RRL agent to explore
the environment and receive positive feedback. More details of this integration can be found in [27].
This user-defined policy can be implemented through the following predicate:

rrl env getActionFromTeacher/2 This predicate is called in every step where RRL uses guidance.
The second argument should output the action that will be taken by the “guidance policy” in
the state provided in the first argument.

9.2 Commands

This section presents an overview of all commands available in a RRL session.

• rrl – rrl
Starts the relational reinforcement learning process

• mrrl(N) – mrrl(N)
Starts N sequential relational reinforcement learning processes

9.3 Settings

This section describes the settings supported by RRL.

• rrl Qlearner(I), where I must be tg or rib3 or csrib or earib or ribc or nlp or kbr or tni or irc
or tgconv or gtb (default: tg). This setting specifies which incremental learner should be used
to estimate the Q-function

• rrl numberOfEpisodes(I), where I must be an integer (default: 1000). This setting specifies
the total number of episodes

• rrl testFrequency(I), where I must be off or a positive integer (default: 100). This setting
specifies the frequency with which the learned policy should be tested. The results will be logged
in a .results file This setting can be set to off if no testing episodes should be performed

• rrl numberOfTests(I), where I must be an integer (default: 100). This setting specifies the
number of episodes used when testing the current policy.

• rrl saveQFunctions(I), where I must be off or a positive integer (default: 50). This setting
indicates if intermediate trees should be saved or not.

• rrl gamma(I), where I must be between 0.0 and 1.0 (default: 0.9). This setting specifies the
reward discound factor (0.0 ≤ γ ≤ 1.0)
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• rrl alpha(I), where I must be between 0.0 and 1.0 (default: 0.1). This setting specifies the
learning rate used by the system (gamma ≤ 1.0)

• rrl startTemperature(I), where I must be a number (default: 5.0). This setting specifies the
start temperature of the Boltzman policy

• rrl minTemperature(I), where I must be a number (default: 1.0). This setting specifies the
start temperature of the Boltzman policy This setting specifies the minimal temperature of the
Boltzman policy

• rrl temperatureDecay(I), where I must be between 0.0 and 1.0 (default: 0.95). This setting
specifies the temperature evoluation (decay) of the Boltzman policy

• rrl teacherFrequency(I), where I must be off or a positive integer (default: off). This setting
specifies if guidance should be used. If it is set to off, no guidance will be used otherwise the
system will generate episodes supplied by the teacher with the frequency specified with this
setting

• rrl numberOfQuestions(I), where I must be an integer (default: 5). This setting specifies the
number of traces supplied by the teacher during every guidance episode

• rrl askQuestions(I), where I must be yes or no (default: no). This setting specifies if active
guidance should be used. This setting is only relevant if rrl teacherFrequency is not set to ’off’.

• rrl freezePolicy(I), where I must be yes or no (default: yes). If this setting is set to yes, a
greedy policy is used during testing, if set to no the exploration policy will be used.



Chapter 10

Incremental learning systems

Even though we describe incremental learning systems in the context of RRL, they can also be used
as separate components that can be used when developing other systems (active learning, stream
learning, . . . ) that can benefit from incremental learning.

An incremental learning system has an operational learned theory at any time and can update its
theory by processing one example or a small batch of examples. After processing examples, the
learning system never needs them again. This can save a substantial amount of memory compared to
batch learners that need all examples until they are finished.

The disadvantage is of course that learning efficiency may be lower, as not all information may be
exploited optimally.

10.1 The TG algorithm

10.1.1 Introduction

The TGsystem is an incremental relational decision tree learner and can be seen as a first order
extension of the G algorithm [10]. Figure 10.1 shows a high level description of the regression algorithm.
It has first been described in [24].

Algorithm TG

1 initialize by creating a tree with a single leaf with empty statistics
2 for each learning example that becomes available do
3 sort the example down the tree using the tests of the internal nodes until it reaches a leaf
4 update the statistics in the leaf according to the new example
5 if the statistics in the leaf indicate that a new split is needed then
6 generate an internal node using the indicated test
7 grow 2 new leafs with empty statistics
8 end if
9 end for

Figure 10.1: The TG-algorithm
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10.1.2 Language bias

The construction of new tests is done through a refinement operator similar to the one used by
the Tilde system. The TG system should be provided an rmode language bias that specifies the
predicates that can be used in every node together with their possible variable bindings.

Such a language bias can be defined as documented in Section 4.2.3. Note however that the current
implementation of the TG system is based on an older version of the refinement operator and that
not all extensions given in Section 4.2.3, such as aggregates, sampling, etc. will be readily available.
For expert users: The construction of candidate tests still happens in the “findall-pack” way and not
yet in the more recent “rmode refop class” way.

TG uses the term setting to store examples. This means examples are never asserted in the form of
a logic program, but every example is just a prolog term. Implicit knowledge can be defined in the
background .bg file.

The root of the language should contain as the first literal a model info/1 literal, which will bind its
argument to the example variable. The example has the following format: It is a tgmodel/3 functor,
where only the second argument is to be used by the language (as the first and third argument contain
Q-value information and these will not be instantiated correctly at the time of prediction). The second
argument of this tgmodel/3 functor is a saPair/2 functor containing the state as its first argument
and the action as its second argument.

An example language bias specification for the blocks world learning on(X,Y )

Assume a state in the blocks world is represented by a blocks/4 functor (blocks(Clear,On,Goal,Steps))
with a list of all clear blocks as the first argument, the list of all on pairs in the second argument.
The third argument contains the learning goal and the last argument the number of remaining steps
allowed by the agent in this episode.

1

2

3

4
5

Figure 10.2: An example state of a blocks world with 5 blocks.

The blocksworld state depicted in Fig. 10.2 would be represented by the following functor assuming
the current goal of the agent is learning to stack the block with id 1 on the block with id 2:

blocks([clear(3),clear(2),clear(4)],[on(3,1),on(1,5),on(5,fl),on(2,fl),on(4,fl)],on(1,2),2)

The following can be the root definition in the .s file.

type(model_info(modelinfo)).
type(get_model(modelinfo,state,block,block)).
type(goal_on(state,block,block)).

rmode_key(model_info(MI)).
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root( (model_info(MI),
get_model(MI,State,X,Y),
goal_on(State, A,B)) ).

In the background (.bg file), one should then have:

get_model(
tgmodel(_,saPair(State,move(X,Y)),_),
State,X,Y).

goal_on(blocks(_,_,on(A,B),_),A,B).

A few possible candidate test can be defined as follows in the .bg file:

rmode(10: clear(+State,+-X)).
rmode(10: on(+State,+-X,+-Y)).
rmode(10: on(+State,+-X, floor)).

with these predicates defined in the background file:

%clear(state,block)
clear(blocks(Clear,_,_,_),Block):-

member(clear(Block),Clear).

%on(state,block,block)
on(blocks(_,On,_,_),X,Y):-

member(on(X,Y),On).

10.1.3 Settings

The following settings can be used for TG.

• tg min sample size(I), where I must be a positive integer (default: 100). This setting indicates
the minimal examples a leaf should contain before it is split. This number should ideally be
sufficiently large so that the chance that a leaf is split based on a bad test is low, but at the
same time the value should not be too large as this may slow down learning.

• tg leafdrift(I), where I must be a number (default: 100). When a leaf is created, the system
starts to predict for that leaf the average Q-value of the examples that would have been sorted
in that leaf since the construction of its parent. The ’weight’ of this initial value is set by this
setting. So the higher this value, the slower the value of the leaf will drift when new examples
are added.

• tg prop opt(I), where I must be on or off (default: on). If this setting is set to on, TG will
do the ’propositional’ optimisation, i.e. if a test does not introduce new variables, the pack for
collecting statistics in the left child node will be the same as the one in the right child node.

• tg mode(I), where I must be regression (default: regression). This setting is always set to
’regression’ at the moment.

• tg conv(T), where T must be parameter list or off (default: off). Since the implementation of
the TG-Conv system, this setting is getting more and more obsolete. Set this setting to off if
you’re not an expert.
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10.1.4 Known issues

The TG system does not check the size of its theory. The memory consumed is at least linear in the
size of the theory. If you use TG as a learner for RRL in an experiment with an infinite amount of
episodes on a sufficiently complex world, there is a good chance that you will eventually run out of
memory.

Also, the TG system does not revise a test once it is chosen. Use the TGR (TG-Conv) system[25] in
Section 10.2 if you want theory revision features.

10.2 The TG-Conv algorithm

The TG-Conv system implements three different incremental decision three learners, but not all of
these are at the moment stable enough to be safely used if you are not an expert.

A short overview of the three different algorithms:

• TG-Conv: a decision tree learner that has formal convergence garantuees to the optimal policy
when used to approximate the Q-function. More details are available in [36]

• a new implementation of the TGalgorithm that uses the newer refinement operator

• TGR: an extension of the TGalgorithm that can revise tests in the decision tree, see [25] for
more details.

10.3 The KBR algorithm

10.3.1 Introduction

The KBR algorithm uses Gaussian processes as an approximation of the Q-function. In order to
employ Gaussian processes in a relational setting, graph kernels are used as a covariance function
between state-action pairs. More details can be found in [26].

In order to use this algorithm, a kernel needs to be defined between state-action pairs of the environ-
ment at hand.

10.3.2 Settings

• kbr kernel(K), where K is of the form (X,Y,D,KernCall) with KernCall/3 a predicate that
will be called to calculate the kernel D(third argument) between two state-action pairs X and Y
(first 2 arguments). (default: (X,Y,D,zero kernel(X,Y,D))).

10.4 The RIB algorithm

10.4.1 Introduction

The RIB3 algorithm uses an instance based approach to approximate the Q-values of unseen state-
action pairs [23]. It requires the user to define a distance function between state-action pairs.
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10.4.2 Settings

• rib distance(R), where R must be an oo distance (default: (X,Y,D,delta distance(X,Y,D))).

• rib maxdiff(X), where X must be a float (default: -1.0).

• rib maxlndiff(X), where X must be a float (default: -1.0).

• rib max theory size(X), where X must be an integer (default: 10000).

• rib safe lowerbound(X), where X must be yes or no (default: yes).

• rib const fg(X), where X must be off or float (default: off).

• rib const fl(X), where X must be off or float (default: off).

• rib limit inflow(X), where X must be off, fg or fl (default: off).

• rib size reduction mode(X), where X must be off, error proximity or error contribution (de-
fault: off).

• rib reduction size(X), where X must be an integer (default: 0).

10.5 The TNI algorithm

The TNI (or TRENDI) algorithm uses a combination of the TG and RIB3 algorithms. At a high
level, it uses a tg like algorithm to divide the example space into regions and uses instance based
predictions in each of the sub-spaces. The algorithm builds a first order decision tree incrementally
and stores a copy of the rib algorithm at each of its leafs. More details can be found in [22].

10.6 The IRC algorithm

The IRC algorithm does incremental rote learning for clustering. By setting the irc class setting to
’simple’, it will act as purely table based Q-learning.
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Chapter 11

Utility Packages

This chapter describes some utility packages.

11.1 The Hypothesis Space Package

The Hypothesis Space package may be useful to find possible problems in the language definition of
your application. It has commands for displaying all queries in the language up to a given level.

ace-mach> use_package(hypspc)
ace-mach> show_hypothesis_space(2)
** hypothesis space **

worn(A)
worn(A),replaceable(A)
worn(A),not_replaceable(A)
worn(A),worn(B)

11.2 The Query Package

The Query package is useful for checking a certain query. It computes statistics for the sets of examples
for which the query succeeds and fails.

ace-mach> use_package(query)
ace-mach> query(worn(A))
Succeeds for 12 examples, fails for 3 examples.
S1: [fix,sendback,ok] = [6.0,6.0,0.0] entropy: 1.0 (query succeeds).
S2: [fix,sendback,ok] = [0.0,0.0,3.0] entropy: 0.0 (query fails).
Heuristic: 1.0.
Execution time 0.0s.

The global distribution of the examples in your application can be obtained with:

ace-mach> query(true)
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Succeeds for 15 examples, fails for 0 examples.
S1: [fix,sendback,ok] = [6.0,6.0,3.0] entropy: 1.52192809488736 (query succeeds).
S2: [fix,sendback,ok] = [0.0,0.0,0.0] entropy: 0.0 (query fails).
...

11.3 The Prolog Prompt

The Prolog prompt can be used to run Prolog queries. One obtains the Prolog prompt after entering
the “prompt” command at the ACE prompt.

ace-mach> prompt
Type ’ace.’ to restart interactive session, ’halt.’ to quit.

ACE ?-

At the Prolog prompt one can enter any valid Prolog query. All predicates defined in the background
knowledge can be used. One can also use builtin predicates form ACE such as member/2 and append/3
and meta-predicates such as findall/3 (See Appendix ?? for a complete list). In the keys setting,
one can also use predicates from the knowledge base. In the models setting this is more difficult.

ACE ?- findall(X, replaceable(X), L).
L = [gear,wheel,chain]

One can also use module qualifications at the Prolog prompt. This is useful for testing purposes if
you are extending ACE with a new package.

ACE ?- module_name:pred_name(X,Y,Z).

It is also possible to let the system enter a number of Prolog queries at the Prolog prompt automatically
after startup. This can be accomplished by adding the queries with execute/1 in the settings file.

execute(prompt).
execute(findall(X, replaceable(X), L)).
execute(ace).

11.4 Destructive Arrays and Matrices

When defining background knowledge, it may be interesting to have access to destructive arrays (and
matrices) that can store integers or floating point numbers. ACE provides dedicated objects for this
purpose. One can construct an array as follows.

new_c_object(int_array, Array)
new_c_object(float_array, Array)
new_c_object(int_matrix, Matrix)
new_c_object(float_matrix, Matrix)
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An array can be accessed with the following predicates. We only list the predicate names for the case
of an int array. Similar predicates exist for float array’s. Arrays expand automatically when using
the set and add predicates. The expand to predicate can be used to allocate an array of a certain
size that is filled with zero’s.

int_array_pushback(Array, Value).
int_array_add_value(Array, Index, Value).
int_array_set(Array, Pos, Value).
int_array_get(Array, Pos, Value).
int_array_get_size(Array, Size).
int_array_expand_to(Array, Size).

The matrices can be accessed with the following predicates. Unlike the arrays, matrices do not grow
automatically. One should specify the size with the set size predicates.

int_matrix_set_size(Matrix, Rows, Cols, Fill).
int_matrix_resize(Matrix, Rows, Cols).
int_matrix_get_size(Matrix, Size).
int_matrix_get_cols(Matrix, Size).
int_matrix_get_rows(Matrix, Size).
int_matrix_put(Matrix, Row, Col, Value).
int_matrix_get(Matrix, Row, Col, Value).
int_matrix_clear(Matrix).

An array or matrix can also be printed to screen. If an array or matrix is no longer used, it should be
deleted, so that the allocated memory is freed.

print_c_object(ArrayOrMatrix).
delete_c_object(ArrayOrMatrix).

11.5 The Linear Regression Package

The linear regression package provides support for performing a linear regression. In order to be
able to use the functions defined by this package, on should put load package(linreg) in the ACE
settings file. A linear regression object can be constructed and accessed using the following functions.

new_c_object(linreg, LinReg).
linreg_clear(LinReg).
linreg_update(LinReg, XValue, YValue).
linreg_covariance(LinReg, Covariance).
linreg_variance(LinReg, XOrY, Variance).
linreg_mean(LinReg, XOrY, Mean).
linreg_intercept(LinReg, Intercept).
linreg_slope(LinReg, Slope).
linreg_count(LinReg, Count).
linreg_r(LinReg, R).
print_c_object(LinReg).
delete_c_object(LinReg).
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11.6 Loading .ARFF Files

ACE has support for loading and accessing .arff files (the Weka file format). The relevant predicates
are defined in the DBMS package, so, one should put load package(dbms) in the ACE settings file
in order to be able to use this feature.

dbms_load_arff(’test.arff’, ID).

The number of rows and the database schema can be obtained as follows.

dbms_get_rows(ID, NbRows).
dbms_get_schema(ID, Schema).

The returned schema contains for each attribute its predicate name and type. The values of the
attributes can be retrieved using these predicate names. Suppose that the RELATION tag of the .arff
file defines the name of the database as “Pen Digits” and the name of the first attribute is “A0”, then
the value of this attribute for a given row can be retrieved as follows.

pen_digits_a0(Row, Value).

The following predicate provides more low-level access to the data.

dbms_get(ID, Row, Col, Value)
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[18] B. Doľsak and S. Muggleton. The application of Inductive Logic Programming to finite element
mesh design. In S. Muggleton, editor, Inductive Logic Programming, pages 453–472. Academic
Press, 1992.

[19] J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretization of contin-
uous features. In A. Prieditis and S. Russell, editors, Proceedings of the Twelfth International
Conference on Machine Learning, pages 194–202. Morgan Kaufmann, 1995.

[20] K. Driessens. Relational Reinforcement Learning. PhD thesis, Department of Computer Science,
Katholieke Universiteit Leuven, 2004.
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