
Learning Contextualized Soccer Player

Representations using Variational

Autoencoders

Maxel Withofs

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
computerwetenschappen, hoofdoptie

Artificiële intelligentie

Promotor:

Prof. dr. J. Davis

Assessoren:

Maaike Van Roy
Prof. dr. D. Hughes

Begeleider:

Maaike Van Roy

Academiejaar 2021 – 2022

© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods, prod-
ucts, schematics and programmes described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotor als de auteur
is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten ervan
verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of gebruik
en/of realisatie van gedeelten uit deze publicatie, wend u tot het Departement
Computerwetenschappen, Celestijnenlaan 200A bus 2402, B-3001 Heverlee, +32-16-
327700 of via e-mail info@cs.kuleuven.be.

Voorafgaande schriftelijke toestemming van de promotor is eveneens vereist voor het
aanwenden van de in deze masterproef beschreven (originele) methoden, producten,
schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending
van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden.

Preface

First of all, I would like to thank my daily supervisor, Maaike Van Roy, for her great
advice and assistance when working on this thesis. I also thank my promotor Prof.
dr. Jesse Davis and assessor Prof. dr. Danny Hughes for reading my text and for
their guidance. Finally, I thank my family, friends, and girlfriend for their continuous
support throughout the years.

Maxel Withofs

i

Contents

Preface i

Abstract iv

Samenvatting v

List of Abbreviations vi

1 Introduction 1

1.1 Problem . 2
1.2 Approach . 2
1.3 Overview . 3

2 Background 4

2.1 Dimensionality reduction . 4
2.2 Neural Networks and RNNs . 5
2.3 Autoencoder . 6
2.4 Variational Autoencoder . 7

3 Related work 12

3.1 Characterizing playing style . 12
3.2 Valuing actions using VAEP . 15

4 Methodology 17

4.1 Data . 17
4.2 Model 1: CVAE . 19
4.3 Model 2: CVRNN . 29
4.4 Model 3: VaRLAE . 35

5 Experiments 42

5.1 Experiments on the VaRLAE model 42
5.2 Analysis of the player representations 46

6 Using the player representations in downstream tasks 52

6.1 Finding similar players . 52
6.2 Using the player representations in VAEP 54

7 Conclusion 58

7.1 Summary . 58
7.2 Future work . 59

Acknowledgements 61

ii

Contents

Bibliography 62

iii

Abstract

In the field of soccer analytics, representing the playing style of players is one of the
main tasks. This can be done using player representations, which are fixed-size vectors
that aim to describe a player’s behavior. With these player representations, one could
do things like comparing players (e.g. to find similar players for scouting purposes)
or monitoring a player’s development, by studying the player’s representation over
time. Various action-based approaches exist that learn these representations, but
they do not explicitly take into account the situations (or match contexts) in which
the players perform those actions.

In this thesis, player representations are obtained that depend on the match context
using different variations of Variational Autoencoders (VAEs) that are trained on
event stream data of real-life soccer games. Three models are constructed, where
each model builds on the previous one and addresses some of its problems. The
final model is called the Variational Recurrent Ladder Agent Encoder (VaRLAE),
which uses Recurrent Neural Networks (RNNs) to make use of the play history
that is present in the data and a hierarchy of latent variables to embed the player
information in.

The models are tested and evaluated by using the player representations that they
learn in a series of tasks. These tasks include identifying players from anonymized
data, where the VaRLAE model performs better than previous approaches, and
finding similar players, in which similarities between players are captured to some
extent. The representations also prove useful in the VAEP framework for valuing
actions and rating players, where the performance on some important metrics like
the Brier score is improved when they are used as extra features during training.
Although the representations could be improved in terms of interpretability, they
have the potential to be successfully incorporated in other soccer analytics tasks.

iv

Samenvatting

In het gebied van voetbalanalyse is het weergeven van de speelstijl van spelers een van
de belangrijkste taken. Dit kan worden gedaan met behulp van speler representaties,
wat vectoren met een vaste grootte zijn die het gedrag van een speler beschrijven. Met
deze speler representaties kunnen taken uitgevoerd worden, zoals spelers vergelijken
(bv. om gelijkaardige spelers te vinden voor scoutingdoeleinden) of de ontwikkeling
van een speler opvolgen, door de speler representaties op verschillende tijdstippen te
bestuderen. Er bestaan verschillende actiegebaseerde benaderingen die deze repre-
sentaties leren, maar daarbij wordt er niet uitdrukkelijk rekening gehouden met de
situaties (of wedstrijd contexten) waarin de spelers deze acties uitvoeren.

In deze dissertatie worden speler representaties verkregen die afhankelijk zijn van de
wedstrijdcontext met behulp van verschillende variaties van Variational Autoencoders
(VAEs) die getraind zijn op event stream data van echte voetbalwedstrijden. Drie
modellen worden geconstrueerd, waarbij elk model voortbouwt op het vorige en
enkele van zijn problemen aankaart. Het laatste model heet de Variational Recurrent
Ladder Agent Encoder (VaRLAE), die gebruik maakt van Recurrent Neural Networks
(RNNs) voor het integreren van de spelhistorie die aanwezig is in de data en een
hiërarchie van latente (of verborgen) variabelen om de spelersinformatie in te bedden.

De modellen worden getest door de geleerde representaties te gebruiken in een reeks
taken. Deze taken bestaan uit het identificeren van spelers uit geanonimiseerde
gegevens, waarbij het VaRLAE model beter presteert dan eerdere benaderingen, en
het vinden van gelijkaardige spelers, waar gelijkenissen tussen spelers tot op zekere
hoogte worden vastgelegd. De representaties blijken ook nuttig in het VAEP kader
voor het waarderen van acties en het beoordelen van spelers, waarbij de prestaties op
een aantal belangrijke metrieken zoals de Brier score verbeteren wanneer ze worden
gebruikt als extra attribuut tijdens het trainen. Hoewel de representaties verbeterd
kunnen worden op het gebied van interpreteerbaarheid, hebben ze het potentieel om
met succes gebruikt te worden in andere voetbalanalysetaken.

v

List of Abbreviations

AUROC Area Under the ROC-curve

CVAE Conditional Variational Autoencoder

CVRNN Conditional Variational Recurrent Neural Network

ELBO Evidence Lower Bound

FAWSL FA Women’s Super League

KL-divergence, KLD Kullback-Leibler divergence

LSTM Long short-term memory

MRR Mean Reciprocal Rank

NMF Non-negative Matrix Factorization

PCA Principal Components Analysis

RNN Recurrent Neural Network

ReLU Rectified Linear Unit

SPADL Soccer Player Action Description Language

t-SNE t-distributed Stochastic Neighbor Embedding

VAE Variational Autoencoder

VAEP Valuing Actions by Estimating Probabilities

VaRLAE Variational Recurrent Ladder Agent Encoder

vi

Chapter 1

Introduction

Data analytics in sports is being used more and more these days. In the case of
soccer, almost every professional football team now has a person or group of people
who maintain player data and use this data in many different tasks. The primary
goal of collecting this data is to use it for analyzing performances of the team’s own
players, but also getting insight in opposing teams and their tactics. At the end of
the line, soccer teams want to do whatever they can to increase their chances at
winning games. Soccer analytics can help with this in various ways.

One of the core tasks of soccer analytics is representing the playing style of players
and teams. These player- or team representations are like their “fingerprints”, they
aim to gain insight in how the player or team acts, i.e. what actions they perform,
in which match contexts. A match context refers to the situation in which the team
or player finds themselves in during a game. For individual players, this can include
the position on the field of the player, the current score of the match, the time that
has passed, etc. With these representations, many different tasks can be done. By
comparing player representations, we can find players that are similar to a target
player, which can in turn be used to find players that fit a certain style for scouting.
Another use is in match tactics, where a team can get to know the strategy or playing
style of its opponent by analyzing its representation.

There already exist several approaches that try to capture playing style via rep-
resentations in soccer, like Player Vectors [1] and SoccerMix [2]. However, these
approaches do not sufficiently take into account the full match context in which
players or teams display a certain playing style. Liu et al. [3] proposed a model
that learns contextualized player representations for ice hockey. They developed a
Variational Autoencoder (VAE) which learns the representations from a large dataset
containing millions of events from real life games of the National Hockey League
(NHL). It is this model that we will deploy in the context of soccer to learn player
representations.

1

1.1. Problem

1.1 Problem

This thesis tries to achieve a number of goals:

1. Develop a Variational Autoencoder similar to that of Liu et al. [3] that learns
contextualized representations of soccer players, and measure its performance.

2. Analyze and interpret the representations that come from the model, along
with trying to determine which factors of the representations are important to
distinguish players.

3. Examine the applicability of the learned representations in down-the-line ana-
lytics tasks like finding similar players and in frameworks for player performance
evaluation like VAEP [4].

1.2 Approach

To tackle the problem statements above, the following steps were carried out. First,
multiple variations of VAE architectures that learn the player representations were
constructed. As a starting point, the simplest extension of a VAE was built: a
Conditional Variational Autoencoder (CVAE), which includes match context as
an input to the model. An extension to that model is a Conditional Variational
Recurrent Neural Network (CVRNN), which takes play history into account by the
usage of hidden states and sequences of actions as input instead of a single action
at a time. The final extension is the Variational Recurrent Ladder Agent Encoder
(VaRLAE), which is also the model described by Liu et al. [3] for the ice hockey case.
In this model, a separate latent variable exists for each component of the context
(the components are the actions themselves, the result of the actions, and the game
state), and these latent variables are dependent on one another. This hierarchy of
latent variables essentially solves the posterior collapse problem (where the network
ignores the latent variables to compute its outputs) from which the CVRNN model
suffers.

For training and testing the models, we use event stream data from real-life games
of the 2019/2020 La Liga season, and of the 2019/2020 and 2020/2021 seasons of the
FA Women’s Super League. Event stream data describes soccer games as a series of
on-the-ball actions, where each action is presented by a number of features like the
type, location, and timestamp of the action. All models are compared to each other
in terms of accuracy on a test set and performance on a player de-anonimization
task. The models are also tested visually, by looking at the different clusters of
representations that these models have learned. After building the models, the repre-
sentations they produce are analyzed. We do this by examining the distributions of
specific components and determining by which factors the player representations can
be distinguished. Furthermore, we look at what happens when certain components
of the representations are altered. Finally, it is tested whether the learned repre-
sentations can be used to find similar players to a target player and in the VAEP

2

1.3. Overview

framework for valuing actions. We do the latter by adding the player representations
as additional features and look how that affects the evaluation metric scores of VAEP.

1.3 Overview

This thesis is structured as follows. Chapter 2 gives some necessary background
information about techniques that will be used later, as well as the working of VAEs.
Chapter 3 gives a small overview of previous work on player representations, including
the work that was used as a large inspiration for this thesis. The VAEP framework
is also briefly introduced. Chapter 4 gives an explanation and implementation of the
three VAE models that were built, along with visualizations of the representations
that they learn and comparisons of their performance. Chapter 5 tests different
configurations of the final model, and analyzes the obtained player representations
in depth. In Chapter 6, we test the applicability of the representations in the VAEP
framework and to find similar players. As a conclusion to this text, Chapter 7
summarizes the work and results again and discusses possibilities for future work.

3

Chapter 2

Background

This chapter gives some necessary background information on the core techniques
that are used throughout this dissertation. First, the concept of dimensionality
reduction and one of the most used methods to achieve this is discussed. Second,
a small introduction to neural networks is given, followed by an explanation of a
specific type of neural network, the autoencoder. Finally, the variational autoencoder
is explained, which is a variation on the classic autoencoder and is the core technology
that the final architecture of this thesis is based upon. The majority of this chapter
is based on the blog post by Joseph Rocca [5].

2.1 Dimensionality reduction

Dimensionality reduction is a concept that is essential to understanding autoencoders
and VAEs, which form the basis of the models that learn our player representations in
Chapter 4 (where a form of dimensionality reduction is applied on high-dimensional
input data). It is a technique to reduce the dimensions (or the number of features)
of data used as input to machine learning models. The data is then described with
fewer features than before, leading to information loss during the data compression.
The purpose of dimensionality reduction is to learn important information about
the data, while keeping the loss of information minimal. It can also be useful in
situations where low dimensional data is required, e.g., visualizing data in the 2D or
3D space.

A general model where most dimensionality reduction techniques build upon is the
encoder-decoder model. We can view the encoder as something that takes in the
original (high-dimensional) data, and produces the compressed (low-dimensional)
data. The new space that this data lives in is called the encoded space or the latent
space. The decoder does the reverse operation, it takes the compressed data as
input and produces output of the same dimensions as the data that was put into the
encoder. An illustration of this general model can be seen in Figure 2.1. The goal
of such models is to make the encoder keep as much information as possible when
compressing the input, so that the decoder produces output that is maximally similar

4

2.2. Neural Networks and RNNs

to the original input data. In other words, we want to minimize the reconstruction
error between the encoder input and the decoder output. As a result of this, the
encoded data will have to contain only relevant information and discard superfluous
information. Dimensionality reduction can thus be seen as a way to focus on the
most important features of your data.

Figure 2.1: Illustration of the general encoder-decoder framework

t-SNE One particular technique for dimensionality reduction is t-distributed
Stochastic Neighbor Embedding (t-SNE) [6]. It is primarily used as a way to
visualize high-dimensional data, which is where we will use it for when we visualize
our player representations. Unlike another popular dimensionality reduction tech-
nique Principal Components Analysis (PCA), t-SNE is non-linear, so it can separate
data which can not be separated by straight lines. t-SNE is capable of preserving
the local structure of the data, i.e. it preserves small pairwise distances or local
similarities, while also providing some insight in global structures (thus, preserving
larger distances) like groupings in clusters. Because PCA is only good at preserving
global structure, we use t-SNE for our visualizations later.

2.2 Neural Networks and RNNs

Neural networks or artificial neural networks (ANNs) are a set of machine learning
models [7]. They consist of nodes (also called neurons) which are connected to each
other in various possible ways. The connections make up layers of nodes and data is
sent through these connections. The data is typically put into the network in one
or more input nodes, and it is later sent to the deeper layers before arriving at the
output layer. With each connection in the network, there is an associated weight
and bias. These are used to transform the data when it goes through the network,
by applying linear or non-linear operations on it. The main goal of a neural network
is to learn from the data it is given and give back useful outputs at the output
layer. The system can “learn” what to output by adjusting the weights and biases

5

2.3. Autoencoder

of the connections, based on the error between the actual output of the network
and the expected output (the true output in supervised learning). A commonly
used algorithm for adjusting the weights during learning is gradient descent with
backpropagation, where each time an error is made with an output, the error is sent
backward and the weights and biases are updated.

Networks where the connections between nodes do not form cycles are called feed
forward neural networks. A special kind of neural network where cycles do occur
and which is used later in this thesis is a Recurrent Neural Network (RNN). RNNs
take sequential data as input, and they “memorize” information of prior inputs
by compressing it into a hidden state vector. These kinds of networks are useful
when data points are dependent on previous data points in the sequence, as the
dependencies are explicitly modelled in the architecture of RNNs.

2.3 Autoencoder

An autoencoder is a type of neural network consisting of two components: an encoder
and a decoder. Autoencoders can be seen as the general encoder-decoder model,
explained in Section 2.1, where the encoder and decoder are neural networks. As
previously stated, the goal of these kinds of models is to minimize the reconstruction
error between the encoder input and the decoder output, while simultaneously learn-
ing latent space representations (compressed representations) of the data. In the case
of autoencoders, this is done by learning the parameters of both components, i.e. its
weights and biases, using gradient descent. Each time the model is given some data,
the reconstruction error between input and decoder output can be calculated, and
this error is backpropagated through the network, resulting in an optimal update
of these parameters. Figure 2.2 shows an illustration of a possible autoencoder
architecture.

6

2.4. Variational Autoencoder

Figure 2.2: Illustration of an autoencoder

The architectures of the encoder and decoder neural networks can vary from simple
feed forward neural nets with a limited number of layers to deep neural nets with
a large number of (nonlinear) layers. With complex architectures, one could theo-
retically do a dimensionality reduction from any dimension to a dimension of one,
by encoding each datapoint from a total of N datapoints as integers 1 to N . The
decoder could then do the reverse process, and the reconstruction error would be zero.
However, just reproducing the output as good as possible is not why autoencoders
are used. They are used to extract meaningful representations from the data that
can be used in other tasks. For the latent representations to be meaningful and
interpretable, the latent space dimension and network architecture should be chosen
well. To prevent autoencoders from learning the identity function and overfitting
on the training data, variations on the basic model were introduced. One way to
achieve this is to change the objective function. Sparse autoencoders (SAEs) [8] add
a sparsity penalty (forcing some hidden units to become inactive) to the original
loss function and contractive autoencoders (CAEs) [9] add a regularization term to
make the model more robust to slight variations of inputs. Other variations include
denoising autoencoders (DAEs) [10], where the input is partially changed by adding
noise to it and recovering the cleaned or denoised data, and variational autoencoders
(VAEs) [11], which is the focus of the following section.

2.4 Variational Autoencoder

Autoencoders are frequently used as generative models. Once an autoencoder is
trained, one could randomly take a point from the latent space, put this into the
decoder, and receive new output that was not in the original training data. Autoen-
coders could thus generate new data that is similar to the training data. For this to
work, the latent space should be regular enough. It became clear in the previous

7

2.4. Variational Autoencoder

section that this is not self-evident. Take the autoencoder which mapped each data
point to an integer from 1 to N again. Taking some points from this latent space
(points that are not in [1..N]) will result in meaningless outputs at the decoder. An
architecture that tries to solve this issue and is often used for generative purposes is
the Variational Autoencoder (VAE) [11]. The regularization that is present in VAEs
is useful for learning player representations because it prevents overfitting to players
with many observations, and thus generalizes to more players with fewer observations.
VAEs have been used for many different applications, such as forecasting action
trajectories [12], image (re)synthesis [13] and chemical design [14].

2.4.1 Architecture

In terms of architecture, a VAE looks similar to a standard autoencoder. The big
difference lies in how the latent space is defined. The latent representations in
standard encoders are fixed vectors. With variational autoencoders, the latent space
is now a mixture of distributions. When training a VAE, the input is first encoded
as a distribution over the latent space. Then, a point (often represented by the letter
z) is sampled from this distribution and is put into the decoder. Finally, like in
standard autoencoders, the reconstruction error is computed and is backpropagated
through the network. Figure 2.3 shows a schematic illustrating this process for a
VAE and standard autoencoder.

Figure 2.3: Illustration of the difference between a standard autoencoder (Top)
and a variational autoencoder (Bottom)

The fact that the latent representations are no longer fixed vectors but distributions,
allows for regularization of the latent space. These distributions are forced to lie
close to another distribution called the prior distribution pθ(z) with parameters
θ, which is the distribution of the latent space, by adding a regularization term
to the loss function. How this loss function is derived, is explained in the next section.

2.4.2 Mathematical formulation

The input data x can be characterized by a distribution pθ(x) with parameters
θ. The assumption is that the data is generated from the latent variables z. This
happens in two steps: z is first sampled from the prior distribution pθ(z), after which

8

2.4. Variational Autoencoder

x is sampled from the conditional likelihood distribution pθ(x|z). Figure 2.4 shows
this process as a probabilistic graphical model 1.

Figure 2.4: Illustration of a probabilistic graphical model describing the generative
process, showing the dependencies between input data x, latent variables z and
distribution parameters θ and φ. From Auto-Encoding Variational Bayes [11]

The encoder and decoder components can now be described as follows. Instead
of being deterministic, the decoder is now a probabilistic decoder, defined by the
distribution pθ(x|z). The probabilistic encoder is similarly defined by the distribution
pθ(z|x). Using the same notations as in probability theory, pθ(z) is called the
prior, pθ(x|z) the likelihood and pθ(z|x) the posterior. The relation between these
distributions comes from Bayes’ theorem:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)

In practice, computing pθ(x) =
∫

pθ(z)pθ(x|z) is an expensive operation and most of
the time intractable. The true posterior will thus have to be approximated by an
approximate posterior distribution qφ(z|x) ≈ pθ(z|x), with φ being the parameters
of that distribution. It is thus qφ(z|x) that is actually modeled by the encoder. One
of the goals now is to have qφ(z|x) as close as possible to pθ(z|x), which is done by
minimizing the Kullback-Leibler divergence DKL(qφ(z|x)||pθ(z|x)) between the two
distributions. This term is defined as follows [15]:

1https://en.wikipedia.org/wiki/Graphical_model

9

https://en.wikipedia.org/wiki/Graphical_model

2.4. Variational Autoencoder

DKL(qφ(z|x) || pθ(z|x)) =

∫

qφ(z|x) log
qφ(z|x)

pθ(z|x)
dz

=

∫

qφ(z|x) log
qφ(z|x)pθ(x)

pθ(z,x)
dz

=

∫

qφ(z|x)

(

log(pθ(x)) + log
qφ(z|x)

pθ(z,x)

)

dz

= log(pθ(x)) +

∫

qφ(z|x) log
qφ(z|x)

pθ(z,x)
dz

= log(pθ(x)) +

∫

qφ(z|x) log
qφ(z|x)

pθ(x|z)pθ(z)
dz

= log(pθ(x)) + E
z∼qφ(z|x)

(

log
qφ(z|x)

pθ(z)
− log(pθ(x|z))

)

= log(pθ(x)) +DKL(qφ(z|x) || pθ(z))− E
z∼qφ(z|x)(log(pθ(x|z)))

The equation can now be rewritten as:

log(pθ(x))−DKL(qφ(z|x) || pθ(z|x)) = E
z∼qφ(z|x)(log(pθ(x|z)))−DKL(qφ(z|x) || pθ(z))

During training of a VAE, the goal is to maximize the left-hand side of this equation.
Because the KL divergence is always non-negative, the following can be written:

log(pθ(x))−DKL(qφ(z|x) || pθ(z|x)) ≤ log(pθ(x))

The objective function that is obtained from this is called the evidence lower bound
(ELBO):

− Lθ,φ = E
z∼qφ(z|x)(log(pθ(x|z)))−DKL(qφ(z|x) || pθ(z)) ≤ log(pθ(x)) (2.1)

The ELBO objective is thus a sum of two terms. The first term indicates how well
x is reconstructed from z ∼ qφ(z|x). Maximizing this term thus corresponds to
minimizing the reconstruction error between input and output of the network. The
second term is a distance measure between the approximate posterior and the prior.
When minimizing this term, the posterior distribution will be forced to lie close to
the prior, which is the regularization we discussed previously. The optimal param-
eters θ∗, φ∗ are the ones that maximize the evidence lower bound, or equivalently
minimize Lθ,φ. In the traditional VAE design, the approximate posterior qφ(z|x) is a
multivariate Gaussian N (µ,σ2I), where µ and σ

2 are the outputs of the encoder
neural network.

10

2.4. Variational Autoencoder

Reparametrization trick Sampling the latent variables z from qφ(z|x) after
the encoding is a non-differentiable operation, which is an issue when we want to
use backpropagation and make gradient descent possible on this architecture. The
so-called reparametrization trick [11] solves this issue. This simple trick modifies
the equation z ∼ qφ(z|x) into z = µ+ σ ⊙ ε with ⊙ the element-wise product and
ε a random vector sampled from the standard normal distribution: ε ∼ N (0, I).
Training is now possible because ε isn’t involved in the backpropagation process.

11

Chapter 3

Related work

In this chapter, previous work about representing soccer players and teams is explored.
Two approaches in particular, that also learn soccer player representations from
event stream data, are explained in more detail. The major differences with our
approach are briefly discussed as well. Then, an approach for learning contextualized
player representations in ice hockey is discussed, which was the main influence for the
models described in this work. Finally, the VAEP framework for valuing on-the-ball
actions in soccer is explained, as we will aim to improve its performance using our
learned player representations in Chapter 6.

3.1 Characterizing playing style

Various approaches exist that try to characterize playing style of sports players
by learning player representations that “describe” these players in a fixed size
vector. Sections 3.1.1 and 3.1.2 explain two action-based approaches for soccer player
representations, one of which is used as a baseline for comparison against our model’s
performance on a player de-anonimization task. Section 3.1.3 shortly describes an
approach for learning ice hockey player representations that relies heavily on the
match context.

3.1.1 Player Vectors

Decroos et al. [1] introduced Player Vectors, an approach for characterizing the
playing style of soccer players based on event stream data. Their goal is to learn a
fixed size player vector for a player based on the event stream data describing the
actions of that player. Playing style is defined here as a concept that is characterized
by a player’s preferred area(s) on the pitch and the actions he or she tends to perform
in these areas.

To achieve this, the relevant action types for this task are selected first. Decroos et al.
argue that the only relevant actions for this task are offensive on-the-ball actions that
come from open play. Only offensive actions are chosen because defensive playing

12

3.1. Characterizing playing style

style is mainly characterized by the positioning of players rather than which defensive
actions they perform with the ball. The actions have to be on-the-ball, because
that is the only data available when working with event stream data. Defensive
on-the-ball actions like tackles and interceptions are omitted, as they are usually
carried out out of necessity rather than being a playing style characteristic of some
player. Actions that are also omitted are set pieces like free kicks or throw ins,
because they are viewed as actions that are performed by specialists (e.g. free kicks)
or by players on a certain position (e.g. throw ins are usually done by a fullback or
winger). The actions that remain then are passes, dribbles, crosses and shots. In this
thesis, no selection of relevant action types is done, as we believe that every action
can be relevant in constructing player representations.

The following step consists of dividing the pitch into zones and counting how many
times a certain relevant action was performed by a certain player. This results in
a fixed sized matrix per player per action type, which is reshaped into a vector
and then grouped together with vectors of the same action type to form a big
matrix per action type. Then, non-negative matrix factorization (NMF) is performed
on these matrices to reduce their dimensionality. The final player vector is then
constructed by concatenating the players’ compressed vectors of each action type.
The quality of the system was assessed by predicting the identity of players based
on anonymized event stream data. The results showed that the system was able
to make very good predictions for offensive players and less good for defensive players.

In the NMF step, a parameter kt needs to be chosen for each action type t. This
parameter refers to the number of principal components of that action type. These
principal components are human-interpretable, as they can be seen as variations of a
certain action type (e.g. close- and far shot for the shot action). The obtained player
vectors can thus be interpreted in a way that is useful for certain tasks like scouting
and monitoring player development. This differs from the approach that is taken in
this thesis, as the obtained player representations are less intuitive. However, this is
not one of the goals we want to achieve, as we mainly want to use the representations
in different tasks that do not require the representations to be easily interpretable.

A downside of Player Vectors is that the context of the actions that are performed
is not fully taken into account. It is primarily based on the type of action and the
zone on the field where the action took place. Other information like the result of
the action, the time that was played, etc. could also be useful in characterizing a
player’s playing style.

3.1.2 SoccerMix

SoccerMix [2] is another approach for capturing playing style of both soccer players
and teams. Grid-based approaches like Player Vectors [1], where a grid is placed
over the field to divide the pitch in zones and where actions are counted in these grid

13

3.1. Characterizing playing style

cells, have some downsides. The grid cell boundaries are user-defined, so they are
somewhat arbitrary, and this can also result in having actions that are spatially close
but are deemed dissimilar by the model because they appear in different cells. Most
approaches include only a few (one or two) attributes to group the actions, because
splitting on more attributes would increase the sparsity of the data. To solve this
problem, Decroos et al. use mixture models to better group actions together. They
also include the direction in which the ball moves for each action, which is a feature
that is also considered in the work of this thesis.

Their approach is as follows. For each action type, a mixture model is fitted to
the locations of actions of that type. Then, a new mixture model is fitted to the
directions of the action for each of the previously obtained mixture models. Each
group in the mixture models corresponds to a prototypical action of a certain type,
location and direction. Each action can then be seen as a probability distribution
over these prototypical actions. This is then encoded in a weight vector, and the
style vectors are obtained by summing the weight vectors of all actions that are
performed by a player in some time span. These vectors are also interpretable, as
the weight of an action group can be seen as an indication of how often that sort of
action is performed by a player. In the same experiment for de-anonymizing players
as conducted in the Player Vectors paper [1], SoccerMix achieved better results on
almost all metrics.

Once again, match context in which the actions are performed is not taken into
account in this approach. Similar to Player Vectors, an interpretable vector is
obtained that can be used for e.g. comparing playing style of players, which is
different from the player representations that are learned by the models we introduce
later. The shortcomings that they try to address here that occurred in grid-based
approaches do not appear in neural network based approaches liked the one introduced
in this thesis.

3.1.3 Learning Agent Representations for Ice Hockey

Liu et al. [3] introduce a Variational Recurrent Ladder Agent Encoder (VaRLAE),
which learns contextualized player representations of ice hockey players conditioned
on the game history. VaRLAE combines variational autoencoders, RNNs and
hierarchical latent variables instead of a single layer of latent variables, resembling
ladder networks [16], in its architecture. The latent variables are hierarchically
structured as in a ladder network, and their dependence follows a Markov Game
Model [17]. This paper is the greatest influence on the work conducted in this thesis,
as the model they introduce is largely the same as the final model that is explained
in Section 4.4 and is used in later experiments. The biggest differences lie in the
data that is used (different features) and the tasks for which they used their player
representations. A more detailed explanation of the models follows in Chapter 4.

14

3.2. Valuing actions using VAEP

3.2 Valuing actions using VAEP

An important task in soccer analytics is measuring the quality of actions that
soccer players perform by assessing which impact they have on the game. Knowing
how valuable the actions of a player are is useful in player scouting and player
development, because they are an indication of the player’s quality or progress.
Valuing players is traditionally done by focusing on specific actions like shots or
tackles, and the match context in which the actions occur is often overlooked. One
approach for valuing player actions that addresses the shortcomings of traditional
player performance metrics is VAEP (Valuing Actions by Estimating Probabilities).
The player representations that are learned by the models introduced in this thesis
are later used as an extra input feature in the VAEP framework, in an attempt to
improve its performance.

VAEP VAEP was introduced by Decroos et al. [4] as a framework for giving
ratings to players and giving value to the actions those players perform. VAEP can
give value to all types of actions (offensive and defensive) where the match context
as well as the possible long-term effects are taken into account.

A value of an action can be seen as a measure on how much the action is expected
to influence the scoreline. Actions will get a positive value when it is expected to
increase the chance of scoring a goal for the team performing the action, and a
negative value when the chances of the opponent for scoring a goal are increased. In
their framework, a soccer game is presented as a series of actions [a1, ..., an] where
each action ai changes the game state from state Si−1 to Si, where the state Si can
be represented by the actions that were performed up to that point in time ([a1, ..., ai]).

To give value to an action, the change in probability of scoring and conceding
needs to be assessed. Let Pscores(Si, x) be the probability that team x (home or
away) scores a goal in the near feature, while being in state Si. The change in
probability for scoring a goal when performing action ai is then ∆Pscores(ai, x) =
Pscores(Si, x) − Pscores(Si−1, x). The authors call this value the offensive value
of action ai for team x. The probability of conceding a goal is similarly repre-
sented as Pconceded(Si, x), and the change in probability when performing action
ai is thus ∆Pconcedes(ai, x) = Pconcedes(Si, x) − Pconcedes(Si−1, x). The offensive
value is positive if the chances of scoring increase. A team should always strive
to reduce the likelihood of an opposing goal, so the defensive value is defined as
−∆Pconcedes(ai, x). These values are combined into the total VAEP value of an
action: V (ai, x) = ∆Pscores(ai, x) + (−∆Pconcedes(ai, x)).

The scoring and conceding probabilities needed to obtain the VAEP values are
calculated by looking k steps ahead (where k is a user-defined parameter), and
computing the probability that a goal is scored in one of these following actions. To
compute these probabilities, binary probabilistic classification was performed with as
input a number of features that describe the game state and as output a binary label

15

3.2. Valuing actions using VAEP

indicating whether a goal was scored in the subsequent k actions. For the input,
only the three most recent actions are considered and a number of features of these
actions are used. The features consist of simple features (like location, action type,
time played, etc.), complex features which are calculated using the simple features
of one action and of consecutive actions, and game context features like the goal
difference after action ai.

The player rating of a player in one game (90 minutes) is calculated as the sum
of the VAEP values of actions that a player performed, scaled down by the actual
minutes played by that player. Intuitively, these player ratings can be seen as the
average net goal difference of the player’s team that a player contributed to in a game.

Because no ground-truth for action values exist, the system was evaluated by looking
at the underlying scoring probabilities, for which ground-truth labels do exist. In
their experiments, Decroos et al. evaluate the system using different classifiers and
different feature sets on the Brier-score metric, which measures the calibration of the
obtained predictions. They concluded that using all VAEP features gave the best
scores, followed by the top 10 most important features of these VAEP features, with
only a small difference in the Brier score. Using only action locations as features gave
the worst scores. In Section 6.2, we will investigate whether the player representations
obtained in this thesis could give an additional performance boost when including
these in the feature set.

16

Chapter 4

Methodology

In this chapter, we start by describing the data that is used for training the different
models. Then, the approach for building the VAE architectures is explained along
with some theoretical background of these models. The training process and details
about the implementation of each model is given as well. Additionally, each model is
evaluated on its accuracy and performance on a player de-anonimization task. The
first model is a simple extension of the standard VAE, and the later models build
further on this with added complexity.

4.1 Data

4.1.1 Data format

One can think of many types of information when describing soccer matches. The
most widely used type of soccer data is match sheet data, which is the usual kind of
high-level information that the media reports on soccer games like line-ups, goals
and substitutions. Currently, many soccer clubs have contracts with companies
who collect data that is more extensive and detailed than simple match sheet data.
One type of data that is collected is tracking data, which captures the exact po-
sition of the ball and of all the players during the whole game. Another type
of data that is sold by organizations like StatsBomb [18], Stats Perform [19] and
Wyscout [20], is called event stream data. It is obtained by human annotators who
record each on-the-ball action in a soccer game. The data consists of information
about each action that is performed with the ball, including the type of action, the
action’s start- and end location, the timing of the action and some additional features.

For the purpose of learning player representations, event stream data is used. More
specifically, the data that is used in training the models and for experiments is that
of two different competitions: the 2019/2020 La Liga season which includes all games
of FC Barcelona and the 2019/2020 and 2020/2021 seasons of the FA Women’s Super
League (FAWSL). The La Liga data was used to quickly train and test different
architectures because it is the smallest dataset with only 33 games. The 2019/2020

17

4.1. Data

FAWSL data contains a lot more games from all teams in that competition (87 games
in total) but doesn’t cover a whole season because it was stopped early due to the
COVID-19 pandemic. The 2020/2021 FAWSL dataset is the most complete dataset,
with 131 games. This data is all publicly available and provided by StatsBomb 1.

The raw StatsBomb data contains very detailed information about each event occur-
ring in the game. Events include everything that happens in a game: actions that
players perform, as well as general events such as the end of the game or substitutions.
For our learning task, only the actions are needed. Events can also contain optional
information, causing the data to differ in size and structure, which makes it harder
to automatically parse it. For this and other reasons, Decroos et al. [4] proposed
SPADL (Soccer Player Action Description Language). SPADL transforms event
stream data from different vendors into one format that is human-interpretable and
simple. The data in the SPADL format contains only on-the-ball actions, where each
action is described by a number of features. We choose the following ten from the
total set of features:

• player id: ID of the player who performed the action

• period id: ID of the period of the game in which the action happened (first
or second half, or first or second period of extra time if applicable)

• time seconds: Start time of the action in seconds counted from the beginning
of the period

• start x, start y, end x, end y: Start- and end coordinates of the action

• type id: Type of action (e.g. pass, dribble...)

• result id: ID of the result of the action (success, failure or others like yellow
card)

• bodypart id: ID of the body part used to perform the action

Features like game id were not used because it is irrelevant to know in which game
the action was performed for learning player representations. The team id feature
was removed as well because the network might give this feature a very high weight
while predicting the acting player and this will not contribute to learning useful
player representations.

From this basic set of features, an additional nine features were derived and added
to the input data because they can be useful for characterizing playing style. The
added features include start- and end distance to goal, start- and end- angle to goal,
the difference in x- and y coordinates and the total distance covered by the action,
which can give an indication whether the player in question plays a lot towards

1https://github.com/statsbomb/open-data

18

https://github.com/statsbomb/open-data

4.2. Model 1: CVAE

the opponent’s goal or plays more defensively. The absolute timing of the action
is included too (the time seconds feature is relative to the period), as well as the
goal-score difference, which is the number of goals that the team of the player on the
ball is behind or ahead. This feature may provide useful information, as some players
might behave differently than other players when their team is winning or losing.

4.1.2 Data preprocessing

Before the data is ready to be used as input for the different models, it needs to
be preprocessed. First of all, some of the integer features (player id, type id,
result id and bodypart id) are not really ordered numerical values but serve as
categorical features. A neural network might interpret these features as being ordered
when putting them into the network like this, so they must be encoded into vectors.
All the mentioned categorical features are encoded as one-hot vectors with as size the
number of different values possible for that feature. All other features are numerical
and are standardized (i.e. the mean of the values in the data is zero and the variance
is one). Standardization is widely done in gradient based algorithms when the input
data attributes have different scales.

To use the data in the recurrent models, it needs to be transformed from single
actions to sequences of actions. How this is done will be explained later in Section
4.3.

4.2 Model 1: CVAE

The first model that was built for learning the player representations is the Condi-
tional Variational Autoencoder (CVAE) [21]. A CVAE is a variant of a variational
autoencoder which uses an additional “condition” as input to the encoder and decoder.
In this case, the condition will be the match context in which a player performs
an action. The distributions that the network now learns (the prior, posterior and
likelihood distributions as explained in Section 2.4.2) all condition on this extra
input, and the latent variables and outputs that the decoder generates now also
depend on this extra condition.

4.2.1 Architecture

To see how this fits into our player representation framework, we will map the data
from Section 4.1 to the variables of the variational autoencoder explained in Section
2.4. A schematic of the CVAE architecture can be seen in Figure 4.1. The input
data x are the player IDs, which are one-hot vectors representing each player pl from
the used dataset. We want the player representations to be dependent on the match
context, because a player’s style can differ depending on the situational context the
player finds his-/herself in, and it is very difficult to describe a player’s style under

19

4.2. Model 1: CVAE

every possible match context. In this case, the match context on a given moment
contains all features described earlier except the player IDs pl. All these features are
concatenated into a single “context” vector c.

Figure 4.1: Schematic of the CVAE architecture

During training, the approximate posterior qφ(z| pl, c), which now conditions on the
match context c, is learned. The parameters µenc and σenc of this Gaussian distri-
bution N (µenc,σenc) are the outputs of the encoder, which takes the concatenation
of the player ID pl and context variables c of an action as input. qφ(z| pl, c) is the
contextualized player representation of player pl under match context c, which is
later used in experiments. Like before, the decoder takes latent variables z as input,
which is sampled from the approximate posterior at training time: z ∼ qφ(z| pl, c). z
is concatenated with c again before being put into the decoder. The decoder models
the likelihood distribution pθ(pl| z, c), and its output is compared with the original
player input pl. The equations from Section 2.4.2 are still valid when conditioning
on c, so the ELBO objective (Equation 2.1) becomes:

− Lθ,φ = E
z∼qφ(z| pl,c)(log(pθ(pl| z, c)))−DKL(qφ(z| pl, c) || pθ(z|c)) (4.1)

The first term measures how well the player ID input is reconstructed, and the second
term measures the closeness of the approximate posterior and the context-specific
prior pθ(z|c), which is again a Gaussian distribution N (µprior,σprior). At test time,
sampling is done from the prior distribution and the sampled latent variables are
concatenated with the context variables to feed into the decoder. The decoder has
to predict the acting player solely on the latent variables and context variables, thus
without the player ID.

As explained before, the Kullback–Leibler divergence term acts as a regularization
term. It creates a shrinkage effect between the individual player representations
qφ(z| pl, c) and the prior that is conditioned on the context pθ(z|c). This means
that the posterior for each player is “shrunk” towards the prior mode (the peak

20

4.2. Model 1: CVAE

of the probability mass function, or the value that is most likely to be sampled)
2. This is useful for our player representations because of two reasons. First, it
prevents overfitting to players with many observations. Because all representations
are drawn towards the prior mode, the model generalizes better. Second, because
prior distributions that are conditioned on similar match contexts lie closer together,
player representations that condition on similar match contexts will also lie closer
together, because they are drawn towards their priors. This has the effect that
the player representations of different players who act similarly in similar match
contexts, or of the same player in different match contexts, will lie closer together.
This property is what is ultimately desired from our player representations, as players
with comparable playing styles will often appear and act the same in similar match
contexts.

4.2.2 Implementation

The layers of the CVAE along with its dimensions are visualized in Figure 4.2.

Figure 4.2: Layers and dimensions of the CVAE

Inference The input of the encoder is the concatenation of the player ID of the
player who performed the action and the context variables of the action. The di-
mension of this input vector depends on the total number of players and thus on
the dataset we are training on. It is of length 370 for the La Liga dataset, 237 for
FAWSL 19/20 and 273 for FAWSL 20/21. The dimension of the context vector, i.e.
the concatenation of all context variables, is the same in all cases (50). It is the sum
of the numeric features (14) and the lengths of the period- (3), action type- (22),
result- (7) and body part (4) one-hot vectors.

2https://en.wikipedia.org/wiki/Mode_(statistics)

21

https://en.wikipedia.org/wiki/Mode_(statistics)

4.2. Model 1: CVAE

The encoder consists of two fully-connected layers with a hidden dimension of 256,
both using a ReLU activation function (with ReLU(x) = max(0, x)). The parameters
µenc and σenc of the approximate posterior distribution are computed by feeding
the hidden variables to fully-connected layers with a linear and softplus activation
function respectively. A linear activation function essentially means “no activation”,
so the weighted output is not changed to obtain the mean µenc. The softplus activa-
tion is a differentiable approximation to the ReLU function (f(x) = log(1 + exp(x))).
It is used because it enforces the variance σenc

2 to be positive. The dimension of
both parameters is the same as the dimension of the latent space embeddings, and
thus of the learned player representations. While experimenting, low dimensions
worked better than high dimensional embeddings, so a dimension of 32 is used.

The network that computes the parameters of the prior distribution is exactly the
same as the encoder network, except that it only takes the context variables as input.
It is therefore not included in Figure 4.2.

Generation z is calculated by using the reparametrization trick (explained in
Section 2.4.2). A random vector ε of length 32 (latent space dimension) is sampled
from the standard normal distribution N (0, 1). During training, z is calculated
by the formula z = µenc + σenc ⊙ ε. At test time, z is sampled from the prior
distribution, so the formula becomes z = µprior + σprior ⊙ ε. The context variables
c are concatenated with z before being fed into the decoder. The first two layers of
the decoder are fully-connected layers with ReLU activation functions. The first one
transforms the input of dimension 32 to a vector of dimension 256, and the second
layer has an output dimension of pl dim, the same dimension as the player input pl.
The final layer is a fully-connected layer with a softmax activation function. The
softmax function is defined as

σ(x)i =
ezi

∑K
j=1 e

zj
for i = 1, ...,K and x = (x1, ..., xK) ∈ R

K

It transforms each component xi to a value between 0 and 1 and makes the sum of
the components add up to 1. The output is thus a vector pl′ of dimension pl dim,
where each component pl′i represents the probability of player i performing the action
that was put into the network, where i is the index of the predicted player in the
ordered list of player IDs.

Loss function The loss function that is used for training the network is derived
from the objective function defined before (Equation 4.1). For the reconstruction
term, a categorical cross entropy loss function is used. It is defined as

CE(yi, ŷi) = −
K
∑

i=1

yi · log ŷi

In our case yi is equal to pl and ŷi is pl
′. Categorical cross entropy measures the

average difference between the actual and predicted discrete probability distributions

22

4.2. Model 1: CVAE

and is the default loss function to use in multi-class classification problems. Another
option that is sometimes used for this kind of task is the Mean Squared Error (MSE).
The regularization term is the KL-divergence between the approximate posterior
distribution and the context-specific prior. For two Gaussian distributions, this term
can be calculated by using the parameters of the distributions 3:

DKL(qφ(z| pl, c) || pθ(z|c)) = log
σprior

σenc

+
σenc

2 + (µenc − µprior)
2

2σprior
2

−
1

2

The loss function we want to minimize it the opposite of the objective function:

Lθ,φ = CE(pl, pl′) +DKL(qφ(z| pl, c) || pθ(z|c))

At test time, we also measure the accuracy of the player predictions by means of the
categorical accuracy metric. This corresponds to the frequency of correct predictions,
where the predicted player is the player corresponding to the highest probability in
the output vector of the decoder.

4.2.3 Model evaluation

To train the CVAE, we use the Adam optimizer. The Adam algorithm is an extension
to stochastic gradient descent, which uses adaptive per-parameter learning rates.
The base learning rate that is used in the experiments is 0.001. In the final model
from Section 4.4, other learning rates will be experimented with. We use the three
competitions mentioned earlier in Section 4.1 to train and test the network. The set
of all actions is randomly shuffled and split in a train and test set containing 67%
and 33% of the total dataset respectively. The model is trained for 50 epochs, and
training is stopped when the loss on the validation set (which is 50% of the test set)
has not improved for 5 epochs (early stopping).

Accuracy Table 4.1 below shows the performance in terms of accuracy of the
CVAE for three datasets.

La Liga FAWSL 2019/2020 FAWSL 2020/2021

0.203 0.082 0.073

Table 4.1: Accuracy of the CVAE for three different competitions

A possible explanation why the accuracy for the La Liga season is a lot higher than
for the two FAWSL seasons is that the La Liga dataset only contains games of FC
Barcelona, so it will be biased towards players from that team. The Barcelona players
have many more datapoints than players of other teams, so their predictions will
generally be better. The performance can be compared against a baseline, which

3https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-

univariate-gaussians

23

https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians

4.2. Model 1: CVAE

chooses a random player as prediction for each action. The accuracy of the random
guessing baseline is around 1

pl dim
for each competition (1

370 ≈ 0.0027 for La Liga,
1

237 ≈ 0.0042 for FAWSL 19/20 and 1
273 ≈ 0.0037 for FAWSL 20/21), so the CVAE

does a lot better. Another baseline is a model that predicts a Barcelona player
each time for the La Liga dataset, which achieves an accuracy of 2.3%. For the two
FAWSL datasets, we use a model that predicts a random player from Arsenal or
Manchester City each time (the two teams with the most actions in both datasets),
achieving an accuracy of 0.5%. Both baselines thus achieve accuracies that are a lot
lower than the CVAE model. As a comparison, the CVAE model of Liu et al. [3]
achieves an accuracy of 11.94%, which is close to what we accomplish.

Visualizations The accuracy metric only measures the predictive performance of
the network, not the quality of the obtained player representations. A way to get
an idea of the embeddings is to visualize them in 2D space and see how well they
are separated. The player representations are 32-dimensional, so a dimensionality
reduction technique is needed which maps them to two-dimensional vectors. One of
the best methods for this task is t-distributed stochastic neighbor embedding (t-SNE),
which was explained earlier in Section 2.1. t-SNE preserves the local structure of the
data, so similar embeddings will be clustered together.

Intuitively, player representations of players that act in the same zone should be
more alike. Because the start area of an action is no explicit attribute of the data,
we divide the pitch in areas and derive the start area from the start location of the
action. How the pitch is divided can be seen in Figure 4.3.

Figure 4.3: Starting areas of the pitch

A choice that has to be made is which vector to choose as our player representa-
tion. Because the player representations are distributions conditioned on the match
context, the vector can be a random sample or the mean vector of this distribution.
We first experiment with random samples. Figure 4.4 shows the high-dimensional
player representations of the acting player at each event of the test data for the three
competitions, visualized in 2D space with t-SNE. The color of the points indicate

24

4.2. Model 1: CVAE

the starting area of the action. The figure shows one big cloud of points for each
competition, indicating that the CVAE can’t properly separate all embeddings.

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.4: Visualization of all player representations labelled by start-area

To see how well individual players are separated, a small set of six players is chosen
for each competition (the same players are chosen for FAWSL 19/20 and FAWSL
20/21), and the embeddings are visualized with t-SNE (Figure 4.5). Here too, all the
points are scattered around the figure, with no separation possible. When we take the
mean vector of the posterior distribution as our embeddings, the t-SNE projections
become separable for the La Liga dataset (Figure 4.7). The points of the FAWSL
19/20 and 20/21 players look different than in Figure 4.5, but separation is still not
possible. A possible cause for this can be that the variances of the components of
the embeddings are very large relative to the means. This is less the case for the
models discussed later. Figure 4.6 shows the embeddings of all players, again using
the mean vectors. The points no longer form one big cloud (except for the FAWSL
19/20 case), but the clusters contain embeddings from all starting areas, so this
figure is not insightful either.

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.5: Visualization of the player representations of six chosen players

25

4.2. Model 1: CVAE

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.6: Visualization of all player representations labelled by start-area, where
the player representation is the mean vector of the posterior distribution

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.7: Visualization of the player representations of six chosen players, where
the player representation is the mean vector of the posterior distribution

Posterior collapse Many VAE architectures experience a problem called posterior
collapse [22]. This problem appears when the weights of the latent space are very
small, such that the decoder ignores the latent vectors and only uses the context
variables to compute its outputs. It occurs when the KL-divergence term in the
loss function drops to almost zero and the latent space becomes over-regularized,
causing the latent variables to contain little or no information. When looking at the
KL-divergence during training of the CVAE on the FAWSL 19/20 and 20/21 data,
we see that it drops to a very small value in the first few epochs (around 10−5) and
it does not change much afterwards (Figure 4.8). On the La Liga data, the KLD
converges to a much greater value (around 0.001).

26

4.2. Model 1: CVAE

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.8: KL-divergence during training of the CVAE on the La Liga (A), FAWSL
19/20 (B) and FAWSL 20/21 (C) data

Several solutions have been proposed to solve this issue, and most of them involve
re-weighting the KL-divergence term in the loss function to lessen its importance
([22], [23], [24]). In addition to the ladder structure they use for their VaRLAE model
(which is explained later in Section 4.4), Liu et al. [3] use a factor β < 1 in their
loss function to scale the KL-divergence term. β is increased linearly from 0 to 1, so
that the model goes from a standard (deterministic) autoencoder to a variational
autoencoder. While Liu et al. only use this warm-up period in their final ladder
model, we try it for all models.

With the warm-up factor, the loss function becomes:

Lθ,φ = CE(pl, pl′) + βDKL(qφ(z| pl, c) || pθ(z|c))

Results using a warm-up period In the following experiments, β is increased
linearly from 0 to 1 during the first five epochs (of the 50 in total). The accuracy of
the CVAE is worse for each competition when applying the warm-up period (Table
4.2).

La Liga FAWSL 2019/2020 FAWSL 2020/2021

0.167 0.024 0.019

Table 4.2: Accuracy of the CVAE with a warm-up period for three different
competitions

When a sample from the posterior distribution is chosen as the player representation,
the t-SNE visualizations look similar to those of Figure 4.4 and 4.5. Using the
mean, the visualizations of the player representations of all players show that the
embeddings are better clustered together, close to other embeddings of the same
start area (Figure 4.9). The case study of six players show different clusters for each
player, especially for the two FAWSL seasons (Figure 4.10). This demonstrates that
even though the accuracy is less for all competitions when using the warm-up period,
the quality of the embeddings has improved.

27

4.2. Model 1: CVAE

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.9: Visualization of all player representations labelled by start-area, where
the player representation is the mean vector of the posterior distribution and a
warm-up period is used

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.10: Visualization of the player representations of six chosen players, where
the player representation is the mean vector of the posterior distribution and a
warm-up period is used

4.2.4 Player de-anonimization

As an additional way to test the quality of the player embeddings, we conduct an
experiment (also done by Decroos et al. [1]) to test how well players can be identified
based on their player representation. This is done for each of the models that follow,
such that their performance can be compared.

Experiment setup We do this by first splitting the test set of each competition
(33% of the total data) into two separate sets. The set which contains 67% of
the testing data is used to compute a single player representation for each player
in that set. Because different representations are learned for each action that a
player performs, we get multiple representations per player. The mean of these
representations per player is taken as the labelled player representation of that player.
Then, the (anonymous) player representations are computed using the remaining
actions of the test set (33% of the total testing data). Next, we compare each
embedding that is obtained against the labelled player representations. A ranking
is then constructed where the labelled embeddings are sorted by increasing Man-
hattan distance, i.e. the labelled player embedding with the smallest Manhattan

28

4.3. Model 2: CVRNN

distance to the given anonymous embedding appears at the top. Another similarity
metric that was tried out is the cosine similarity, but it was left out in the experi-
ments because the results were very similar. We can then count how many times
the unknown player appears at a certain position in the ranking. It is of course
desired that the unknown players appear many times at the top of their own rankings.

Five metrics are reported that reflect the quality of the player embeddings: the
percentage of how many times a player is in the top-k of their own ranking (with
k ∈ {1, 3, 5, 10}), and the mean reciprocal rank (MRR), which is defined as follows:

MRR =
1

|Q|

|Q|
∑

i=1

1

ranki

|Q| is the amount of rankings that are evaluated and ranki is the place of the correct
player in ranking i. Higher MRR values mean that the players appear higher in their
own rankings on average.

Results The results of this experiment for the CVAE model on the three datasets
are shown in Table 4.3 below. A warm-up period is used because the results are
better than without it. For each competition and on each metric, the scores are very
low. This is due to the posterior collapse problem explained earlier, which renders
the learned embeddings useless for downstream tasks.

Top-1 Top-3 Top-5 Top-10 MRR

La Liga 0 0.003 0.005 0.010 0.014
FAWSL 19/20 0.002 0.005 0.012 0.031 0.022
FAWSL 20/21 0 0.004 0.009 0.026 0.019

Table 4.3: Top-k percentage and MRR of the CVAE model on the three datasets

4.3 Model 2: CVRNN

The next model that is discussed is the Conditional Variational Recurrent Neural
Network (CVRNN). A CVRNN is an extension of a VRNN [25], adding context
variables to it, like the CVAE extended the VAE. This model incorporates the play
history by extending the CVAE into a recurrent framework.

4.3.1 Additional data preprocessing

Because RNN models expect sequential data as input, our data needs to be adapted
to fit into the model. In the CVAE model, each input was a single action consisting of
the player ID pl and the context variables c. This has to be transformed to sequences
of actions [a1, ..., at, ..., aN], with at the action at timestep t in the sequence. To

29

4.3. Model 2: CVRNN

effectively incorporate play history, the actions need to logically follow one another,
i.e. they can not be shuffled. A single sequence also can not contain actions from
different games, because they did not occur consecutively in real life either. Our
sequences consist of ten actions each, where a value of ten is chosen as a balance
between the fact that actions ten or more steps ago can have an influence on the
current action, and a sequence length that is not too large. To obtain the sequences,
the data is first split up game per game, after which it is preprocessed like in Section
4.1.2. Then it is made into sequences by taking the first ten actions of the game
and then shifting one action at a time to get a new sequence each time there is a shift.

4.3.2 Architecture

The CVRNN architecture can be seen as a CVAE embedded into an LSTM, which is
a special kind of RNN that can maintain information for longer time periods. An
LSTM can be “unrolled”, so that it looks like a chain of cells (with the same length
as the input sequences) which hold copies of the same network, a CVAE in our case.
One such cell at timestep t of the CVRNN is shown in Figure 4.11.

Figure 4.11: Schematic of one CVRNN cell

At each timestep t, player ID plt and context variables ct are put into the network
and the output is a player prediction pl′t, just like in the CVAE case. The difference is
that information from the beginning of the sequence is passed through the network to
later timesteps via the hidden states ht and cell states Ct. These states are updated
each time step by means of an LSTM cell. This cell returns a new cell- and hidden
state, which are used again in the next timestep for the computation of the next
player prediction, hidden state and cell state.

30

4.3. Model 2: CVRNN

Using play history as an extra information source to predict the acting player should
result in a performance boost of the model. Knowing which actions were performed
before the current action and by whom can give lots of extra information. Although
team information is left out, the model can learn which players play in the same
team, because it is likely that players in the same sequence belong to the same team.
If the ball is passed around nine times by players of the same team, it is very likely
that the tenth action will be performed by another player of that team who operates
in the area where the action took place.

4.3.3 Implementation

The implementation of the CVRNN is a bit different from that of the CVAE (Figure
4.12):

Figure 4.12: Layers and dimensions of one CVRNN cell

Inference In the encoder, the context variables ct first go through a fully-connected
layer with linear activation before being concatenated with the player IDs plt. This
is followed by two fully-connected layers with ReLU activation, where in between the
two layers the output of the first layer is concatenated with the hidden state of the
previous time step ht−1. The parameters µenc,t and σenc,t are computed as in the
CVAE. From these parameters, the player representation of player plt given match
context ct (qφ(zt| plt, ct)) can be obtained. Like in the CVAE, the mean vector or a
random sample from the distribution defined by the parameters can be chosen as the
final player representation. Important to note is that only the representations of the
last timestep are used in measuring the accuracy and for downstream tasks, because
only this representation has the information from all other actions in the sequence
(because the RNN is unidirectional). The prior network is again the same as the
encoder network, except for one less fully-connected layer before the concatenation
with the hidden state variable.

31

4.3. Model 2: CVRNN

Generation The latent variables zt are calculated as before by using the reparametriza-
tion trick. The decoder is very similar to the encoder except for the final layer:
ct first goes through a fully-connected layer with linear activation, after which it
is concatenated with zt. Two fully-connected layers with ReLU activation follow,
where the output of the first layer is concatenated with ht−1. The final layer is a
fully-connected layer with softmax activation, and the output is once again a vector
with the probabilities of each player performing the action.

LSTM states update The new hidden- and cell state are computed as follows.
The output of the first fully-connected layer with ReLU activation at both the
encoder and decoder are concatenated and fed into an LSTM cell, along with the
hidden- and cell state from the previous timestep (ht−1 and Ct−1). The LSTM cell
then outputs the new states (ht and Ct).

The total loss is now the sum of the loss at each timestep:

Lθ,φ =

10
∑

t=1

CE(plt, pl
′
t) + βDKL(qφ(zt| plt, ct) || pθ(zt|ct))

4.3.4 Model evaluation

Accuracy For training the CVRNN model, the same configurations as for the
CVAE model are used: it is trained for 50 epochs with early stopping using a learning
rate of 0.001 and the Adam optimizer. Table 4.4 shows the accuracy for the three
datasets with and without a warm-up period. The accuracies are a lot higher than
those of the CVAE model, especially for the two FAWSL seasons. The warm-up
period only slightly improves the performance for La Liga and FAWSL 20/21, and the
accuracy for FAWSL 19/20 decreases by a very small amount when using warm-up.
We can conclude that adding play history significantly improves identifying the
correct players. Liu et al. [3] do not use a warm-up period in their CVRNN model,
which has an accuracy that lies around 46%.

La Liga FAWSL 2019/2020 FAWSL 2020/2021

No warm-up 0.443 0.534 0.486
Warm-up 0.444 0.532 0.493

Table 4.4: Accuracy of the CVRNN for three different competitions

Visualizations While the accuracy of the CVRNN improved a lot over the CVAE,
the quality of the player representations did not. The t-SNE visualizations of
all players and of six chosen players when a random sample from the posterior
distribution is chosen as the embeddings are similar to those of Figure 4.4 and 4.5
both with- and without warm-up, where the embeddings form one big cloud of points
(which is why they are not shown here). The visualizations using the mean vector as

32

4.3. Model 2: CVRNN

embedding differ in shape, but still lack interpretable clusters in most cases. Figures
4.13 and 4.14 show the embeddings of all players, and Figures 4.15 and 4.16 the
embeddings of six chosen players with- and without warm-up respectively.

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.13: Visualization of all player representations labelled by start-area using
the mean vector as player embedding

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.14: Visualization of all player representations labelled by start-area using
the mean vector as player embedding and a warm-up period

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.15: Visualization of the player representations of six chosen players using
the mean vector as player embedding

33

4.3. Model 2: CVRNN

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.16: Visualization of the player representations of six chosen players using
the mean vector as player embedding and a warm-up period

Only for the plot of six players of the FAWSL 19/20 season without warm-up (and
a bit for the La Liga players too) are the embeddings placed somewhat near to
embeddings of the same player. Compared to the CVAE, using a warm-up period
did not help in improving the quality of the learned embeddings, as the figures show.

Posterior collapse The CVRNN experiences the same problem of posterior
collapse as the CVAE: the KL-divergence drops to a small value (around 0.001 for
the FAWSL 20/21 data) after only two training epochs (see Figure 4.17 (A)). When
the warm-up period is used, the KL-divergence first rises (because β is increased)
and then drops to a small value again (around 0.0005) when β has increased to one
(Figure 4.17 (B)). We can thus conclude that only using the warm-up does not solve
the issue of posterior collapse for the CVRNN.

(a) No warm-up (b) Warm-up

Figure 4.17: KL-divergence during training of the CVRNN on the FAWSL 20/21
data

Player de-anonimization We now conduct the player de-anonimization experi-
ment that was introduced in Section 4.2.4 on the CVRNN model with a warm-up
period (Table 4.5). Although the scores are slightly better than those of the CVAE
model, they are still very low. Just like with the CVAE (Table 4.3), the reason for
the poor performance is the posterior collapse problem that the model suffers from.

34

4.4. Model 3: VaRLAE

Top-1 Top-3 Top-5 Top-10 MRR

La Liga 0.002 0.006 0.010 0.025 0.026
FAWSL 19/20 0 0.004 0.009 0.024 0.020
FAWSL 20/21 0.001 0.006 0.013 0.036 0.023

Table 4.5: Top-k percentage and MRR of the CVRNN model on the three datasets

4.4 Model 3: VaRLAE

The third and final model is called the Variational Recurrent Ladder Agent Encoder
(VaRLAE) [3]. It is another recurrent model like the CVRNN, with the addition of
a hierarchical latent space. Every RNN cell contains a Ladder-VAE (LVAE) [26],
where three latent variables are used in a hierarchical structure instead of one. The
three latent variables relate to different features of the context variables, who are
first split up to form three different inputs instead of one ct.

4.4.1 Additional data preprocessing

The context variables ct are split into three: st, at, rt. These components follow a
Markov Game Model [17], where an agent at game state st performs an action at
and receives a reward rt (st → at → rt). Liu et al. [3] choose to let at contain only
the action, rt the reward and st the rest of the features. Our approach is similar: rt
contains the result id, at the type id and bodypart id, and st all other features.

4.4.2 Architecture

One cell of the VaRLAE network is shown in Figure 4.18. There are now four inputs:
the player at time t, plt, and the context variables st, at and rt. The inference
part of the network consists of multiple layers following a dependency structure.
Deterministic variables dt are calculated from the input variables (player and context)
and the variables from lower layers. The information flow is thus bottom-up. The
direction of information flow is reversed when obtaining the approximate posterior
distributions. The posterior distributions are again Gaussians and their parameters
are computed by a weighted combination of the upper layers’ prior distribution
parameters (µprior

t and σ
prior
t) and the deterministic variables dt from the same

layer. The parameters of the prior distribution come from the generative process
(the decoder), so information is being shared between the generative model and
the inference model (hence the double lines between the latent variables in Figure
4.18). The bottom posterior distribution qφ(zr,t| plt, rt, za,t) captures information
from upper layers and serves as the contextualized player representation of player plt
under the given match context. The priors are computed from the context variables
and from the latent variables of upper layers. It is from here that the latent variables
are sampled to predict the acting player at the output layer.

35

4.4. Model 3: VaRLAE

Figure 4.18: Schematic of the VaRLAE architecture

For the computation of the deterministic variables dt and for the prior parameters
µ
prior
t and σ

prior
t , batch normalization is used at each layer. Batch normalization

[27] aims to stabilize neural networks through normalization of each batch of input
data by subtracting the batch mean (re-centering) and dividing by the batch standard
deviation (re-scaling). Its initial goal was to reduce the shift of the distributions
(means and variances) of the networks’ hidden layers, called the internal covariate
shift. The usage of batch normalization has some additional benefits. It allows the
usage of larger learning rates with a smaller chance of exploding or vanishing gradi-
ents, and it is believed to reduce chances of overfitting as it adds slight regularization.
It also makes the network more robust to different learning rates and less dependent
on the initialization.

Liu et al. [3] report that the hierarchical latent variables prevent posterior collapse,
which is often an issue when using high capacity decoders. The ladder structure
should ensure that the decoder uses the latent variables during the generation process,
and so that the latent variables contain meaningful information about the acting
player in the given context. Because of the top-down information flow, the decoder
is forced to use the latent variables from upper layers in order to make use of the
context variables.

4.4.3 Implementation

At first, the deterministic variables dt are computed using two inputs at each layer
starting at the bottom with dr,t which uses plt and rt (Figure 4.19). The context
input rt first goes through a fully-connected layer (denoted as F-C in the figures)
after which it is concatenated with the other input, plt in this case. It is then fed into
another fully-connected layer, followed by batch normalization and ReLU activation
to obtain dr,t. From dr,t, we obtain the Gaussian parameters µ̂enc

r,t and σ̂
enc
r,t from

fully-connected layers with linear and softplus activation respectively. These will be

36

4.4. Model 3: VaRLAE

used later in the computation of the posterior parameters. At the higher layers, the
same functions are applied using different inputs. Instead of plt, the deterministic
variable from one layer lower is used as the first input and the second input becomes
the corresponding context variable (at at the middle layer and st at the top layer).
st is first concatenated with ht−1 for the calculation of ds,t.

Figure 4.19: Layers and dimensions of the VaR-
LAE upward pass

Figure 4.20: Layers and
dimensions of the VaRLAE
LSTM hidden state update

Then, the parameters of the approximate posterior- and prior distributions are
computed in a stochastic downward pass (Figure 4.21). For the prior distributions,
we concatenate at each layer the context variable and latent variable z(+),t from the
upper layer after being processed by fully-connected layers (at the top layer, z(+),t

is replaced by ht−1). The Gaussian parameters µprior
t and σ

prior
t are obtained by

feeding this into the same kind of layers used for calculating µ̂
enc
t and σ̂

enc
t . At the

top layer, the parameters of the posterior distribution µ
enc
s,t and σ

enc
s,t are equal to

µ̂
enc
s,t and σ̂

enc
s,t calculated earlier. At the lower layers, the parameters are obtained

by a weighted combination of (µ̂enc
c,t , σ̂enc

c,t) and (µprior
c,t , σprior

c,t) (with c ∈ {a, r}):

µ
enc
c,t =

µ̂
enc
c,t (σ̂enc

c,t)−2 + µ
prior
c,t (σprior

c,t)−2

(σ̂enc
c,t)−2 + (σprior

c,t)−2
and σ

enc
c,t =

1

(σ̂enc
c,t)−2 + (σprior

c,t)−2

The player output pl′t is computed by feeding zr,t into two consecutive fully-connected
layers with ReLU and softmax activation. The next hidden state is computed by
feeding ψ([zr,t, rt,at, st, plt]) into an LSTM cell (Figure 4.20), where ψ(.) is a fully
connected layer with ReLU activation and [.] represents a concatenation. Lastly, the

37

4.4. Model 3: VaRLAE

Figure 4.21: Layers and dimensions of the VaRLAE downward pass

loss function becomes:

Lθ,φ =
10
∑

t=1

∑

c∈{s,a,r}

CE(plt, pl
′
t) + βDKL(qφ(zc,t| plt, ct, z(+),t) || pθ(zc,t|ct, z(+),t))

4.4.4 Model evaluation

Accuracy Table 4.6 shows the accuracies of the VaRLAE model on the three
competitions with- and without using a warm-up period. The Adam optimizer and
a learning rate of 0.01 were used for training the model. The learning rate is larger
than in previous experiments because the VaRLAE model tends to be unstable for
smaller learning rates when a warm-up period is used. Some of the weights get
NaN values, rendering the model and the embeddings useless. The accuracies of
the VaRLAE model are higher for all competitions than those of the CVRNN, and
the warm-up period also gives a small improvement in accuracy. Once again, our
accuracies are similar to those of Liu et al. [3] for the ice hockey case, whose VaRLAE
model achieves an accuracy around 50%.

La Liga FAWSL 2019/2020 FAWSL 2020/2021

No warm-up 0.446 0.550 0.537
Warm-up 0.451 0.579 0.538

Table 4.6: Accuracy of the CVRNN for three different competitions

38

4.4. Model 3: VaRLAE

KL-divergence When looking at the KL-divergence during training (Figure 4.22),
we see that it converges to a value of around 0.04 after six training epochs for the
models with- and without warm-up. This is a lot higher than in the CVRNN case,
where the KLD dropped to values around 0.001 very quickly. This suggests that
the VaRLAE model does not experience the posterior collapse problem like previous
models.

(a) No warm-up (b) Warm-up

Figure 4.22: KL-divergence during training of the VaRLAE on the FAWSL 20/21
data

Visualizations Figure 4.23 and 4.24 show the t-SNE visualizations of all player
embeddings and the embeddings of six players respectively. The embeddings in these
figures are random samples from the posterior distributions qφ(zr,t| plt, rt, za,t). In
previous models, choosing the mean vector as the player embedding resulted in better
looking figures. The variances were very high relative to the means in those models,
but this is not the case anymore for the VaRLAE model. The plots using the mean
vector as embedding look almost the same now as the plots when using random
samples, so only the latter are shown. The plots of the models that use a warm-up
period also look very similar to the ones who do not, so they are also not shown here.

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.23: Visualization of all player representations labelled by start-area

39

4.4. Model 3: VaRLAE

(a) La Liga (b) FAWSL 19/20 (c) FAWSL 20/21

Figure 4.24: Visualization of the player representations of six chosen players

The plots demonstrate that the quality of the embeddings have improved a lot.
In Figure 4.23, many clusters of the same color are visible, so the embeddings of
players who perform actions in the same area are similar. The clusters of embeddings
in Figure 4.24 are nicely separated, and embeddings of the same players appear
in the same clusters. Some clusters lie close together or have overlapping areas,
which make sense intuitively. In the FAWSL 19/20 and 20/21 figures, we see that
the embeddings of Manuela Zinsberger, Leah Williamson and Vivianne Miedema
appear close together. These are all players from the same team (Arsenal WFC).
Other players from the same team (Manchester City WFC) are Ellie Roebuck and
Ellen White, whose embeddings also lie close together in the FAWSL 20/21 plot.
The embeddings of players in the same position are also similar: Ellie Roebuck and
Manuela Zinsberger are both goalkeepers, and Ellen White and Vivianne Miedema are
both strikers. The resemblance is less clear for the two centre-backs Leah Williamson
and Millie Bright.

Player de-anonimization Table 4.7 shows the results of the player de-anonimization
task for the VaRLAE model. The scores are a lot higher than those of the CVAE
and CVRNN models, proving that the embeddings can indeed be useful in down-
stream tasks. We also make a comparison with the player representations learned
by SoccerMix (Section 3.1.2), trained on the three datasets (Table 4.8). While the
scores of that model are not bad at all, the VaRLAE model achieves higher scores
on all metrics. What is also interesting is to examine the individual rankings and see
which players other than the player for whom the ranking was established appear in
the list. This is done for the VaRLAE model later in Section 6.1. In the next chapter,
we explore different configurations of the VaRLAE model, to see if the performance
can be improved even more.

Top-1 Top-3 Top-5 Top-10 MRR

La Liga 0.418 0.546 0.610 0.699 0.511
FAWSL 19/20 0.515 0.665 0.729 0.812 0.614
FAWSL 20/21 0.478 0.642 0.713 0.810 0.587

Table 4.7: Top-k percentage and MRR of the VaRLAE model on the three datasets

40

4.4. Model 3: VaRLAE

Top-1 Top-3 Top-5 Top-10 MRR

La Liga 0.255 0.415 0.479 0.606 0.371
FAWSL 19/20 0.301 0.485 0.578 0.757 0.435
FAWSL 20/21 0.361 0.530 0.602 0.703 0.477

Table 4.8: Top-k percentage and MRR of the SoccerMix model on the three
datasets

41

Chapter 5

Experiments

In this chapter, the outcomes of experiments on the models from Section 4 are
described. First, we test the VaRLAE model on multiple configurations, in which
we make use of the MRR metric introduced in the previous chapter to test their
performance. Then, we explore the player representations more thoroughly by
examining their component values and looking at the effect of changing those values.

5.1 Experiments on the VaRLAE model

In this section, we experiment with various learning rates as well as different latent
space dimensions for the VaRLAE model, in order to find out which configuration
has the best performance. Then, the importance of some components of the model
is assessed. We look at the performance when we leave out batch normalization, as
well as when we leave out some information of the context variables by using the
intermediate representations za,t and zs,t as our player representations.

5.1.1 Experiments on the learning rate

We first consider the case where the dimensions of the latent variables zs,t, za,t and
zr,t are all equal to 32. The accuracy as well as the MRR metric is reported for
each competition using learning rates of 0.01, 0.001 and 0.0001 on the VaRLAE
model with- and without warm-up (Table 5.1 and 5.2). The MRR of the player
de-anonimization task introduced in Section 4.2.4 is included because the accuracy
metric does not provide insight on the quality of the player representations.

42

5.1. Experiments on the VaRLAE model

Learning rate La Liga FAWSL 19/20 FAWSL 20/21

0.01
No warm-up 0.446 0.550 0.537
Warm-up 0.451 0.579 0.538

0.001
No warm-up 0.453 0.567 0.527
Warm-up / 0.557 /

0.0001
No warm-up 0.435 0.569 0.541

Warm-up / 0.566 0.533

Table 5.1: Accuracy of the VaRLAE model for different learning rates on the three
competitions, where dimzs,t = dimza,t = dimzr,t = 32

Learning rate La Liga FAWSL 19/20 FAWSL 20/21

0.01
No warm-up 0.511 0.611 0.587

Warm-up 0.512 0.627 0.578

0.001
No warm-up 0.510 0.620 0.585
Warm-up / 0.578 /

0.0001
No warm-up 0.482 0.622 0.587
Warm-up / 0.610 0.545

Table 5.2: MRR of the VaRLAE model for different learning rates in the three
competitions, where dimzs,t = dimza,t = dimzr,t = 32

The accuracies only vary slightly, and for each competition a different learning rate
gives the best result. For the MRR, a learning rate of 0.01 resulted in the highest
scores. The model can be unstable when the warm-up period is used, especially when
smaller learning rates are used. Some of the weights would get NaN values so that
the accuracy and MRR could not be measured (indicated with ‘/’ in the tables).

5.1.2 Experiments on the latent space dimensions

Table 5.3 shows the MRR metric of the VaRLAE model for different learning rates,
now using a dimension of 64 for zs,t and za,t. The dimension of zr,t (dimension of the
player representations) is kept at 32 to allow fair comparison between the different
models. The best scores now appear at different learning rates, and the models
seem somewhat more stable because fewer results are undefined. For the La Liga
and FAWSL 20/21 datasets, the highest MRR scores across all learning rates are
better than those of the model with dimzs,t = dimza,t = dimzr,t = 32, although the
differences are small. Achieving the best results thus depends on the dataset, as
there is no clear “best” learning rate or latent space dimensions to use.

43

5.1. Experiments on the VaRLAE model

Learning rate La Liga FAWSL 19/20 FAWSL 20/21

0.01
No warm-up 0.507 0.601 0.591
Warm-up 0.517 0.610 /

0.001
No warm-up 0.486 0.610 0.584
Warm-up 0.512 0.617 /

0.0001
No warm-up 0.495 0.576 0.604

Warm-up 0.494 0.525 0.537

Table 5.3: MRR of the VaRLAE model for different learning rates on the three
competitions, where dimzs,t = dimza,t = 64 and dimzr,t = 32

5.1.3 Experiment on batch normalization

Many processing steps in the VaRLAE network involve feeding an input to a fully-
connected layer, followed by batch normalization and ReLU activation. We now
train a VaRLAE model without batch normalization to investigate the effect it has
on the model’s performance. Figure 5.1 shows the t-SNE visualizations of all players
labelled by starting area of the action and the case study of six chosen players for the
FAWSL 20/21 data. Both figures show clouds of points with all mixed labels, so no
separated clusters containing points with the same label as when batch normalization
was used (Figure 4.23 and 4.24).

(a) All players (b) Six chosen players

Figure 5.1: t-SNE visualizations of (A) all players labelled by start-area of the
action and (B) six chosen players of the FAWSL 20/21 data

Table 5.4 shows the top-k results and MRR from the player de-anonimization task on
the FAWSL 20/21 data for the VaRLAE model with- and without batch normalization.
The model without batch normalization achieves scores that are a lot lower than the
standard model. This proves that batch normalization is crucial for the VaRLAE
model to learn quality player representations.

44

5.1. Experiments on the VaRLAE model

Top-1 Top-3 Top-5 Top-10 MRR

With batch normalization 0.478 0.642 0.713 0.810 0.587
Without batch normalization 0.006 0.022 0.039 0.081 0.039

Table 5.4: Top-k percentage and MRR for the VaRLAE model with- and without
batch normalization on the FAWSL 20/21 data

5.1.4 Analysis of the intermediate latent variables

In our VaRLAE model, the latent variables zr,t are used as the player representations.
It has the most complete information about the players because it conditions on all
context variables and receives all information from higher layers. We now experiment
with the other latent variables za,t and zs,t. These variables have access to less
information than those at the lowest layer, i.e. za,t has access to only at and st and
za,t only to st. The embeddings are visualized using t-SNE as was done for zr,t in
Section 4.4.4, and we compare their performance on the player de-anonimization
task.

t-SNE visualizations Figure 5.2 shows the t-SNE visualizations of (A) zr,t, (B)
za,t and (C) zs,t of all players in the FAWSL 20/21 dataset, labelled by start-area.
The visualizations look very similar, suggesting that the embeddings will also be
very similar. The case study for six players is shown in Figure 5.3. We observe the
same as in the previous figure, namely that the plots are very much alike. The same
is true for the other datasets, which is why they are not shown here.

(a) zr,t (b) za,t (c) zs,t

Figure 5.2: Visualization of all latent space embeddings zr,t, za,t and zs,t of the
FAWSL 20/21 data, labelled by start-area

45

5.2. Analysis of the player representations

(a) zr,t (b) za,t (c) zs,t

Figure 5.3: Visualization of the latent space embeddings zr,t, za,t and zs,t of six
chosen players of the FAWSL 20/21 data

Player de-anonimization We now look at the performance of the intermediate
embeddings when they are used in the player de-anonimization task from Section
4.2.4. Table 5.5 shows the top-k results and the MRR for the three latent variables
learned by training on the FAWSL 20/21 data.

Latent variable Top-1 Top-3 Top-5 Top-10 MRR

zr,t 0.478 0.642 0.713 0.810 0.587
za,t 0.439 0.616 0.683 0.770 0.554
zs,t 0.430 0.616 0.688 0.776 0.551

Table 5.5: Top-k percentage and MRR when using different latent variables as
player embeddings on the FAWSL 20/21 data

As expected, the embeddings that contain the most information (zr,t) achieve the
best scores on each metric. The embeddings who have access to the least amount of
information (zs,t) have the worst MRR score, although doing better on the top-5 and
top-10 metrics than za,t. However, the performance of the intermediate embeddings is
only slightly worse than our usual player representations zr,t. This suggests that most
information used for distinguishing players is contained in the zs,t latent variables,
and that the action- and result context variables only add a small contribution.

5.2 Analysis of the player representations

We now further analyze the player representations learned by the VaRLAE model.
We first examine specific components of the latent variables and their importance to
the decoder prediction. Then, we verify what happens at the decoder output when
a component of the latent variable is changed. In this way, we can find out which
components of our player representations are important in order to distinguish them.

5.2.1 Analysis of the latent variable components

In previous work on soccer player representations, the components of the vectors
that are obtained are human-interpretable. In Player Vectors (Section 3.1.1), each

46

5.2. Analysis of the player representations

component stands for a variation of an action, and the value of that component rep-
resents how often a player performs that action. The same idea is used in SoccerMix
(Section 3.1.2), where the components represent prototypical actions. We will now
investigate whether some of the 32 components of the embeddings learned by the
VaRLAE model represent meaningful entities.

With entities, we mean things by which players in a certain match context can
be described and distinguished from one another. A number of possible entities
that could be important for distinguishing players are the player’s team, the area
where the player tends to perform most of his/her actions, the type of actions that
the player likes to perform, ... Intuitively, when one of the representation vector’s
components represents a certain entity (which we don’t know yet), players that differ
on that entity will also have a different value for that component. For example,
say that the first component of our player representations represents the team of
that player. Players from different teams would then have different values for that
component. This also means that for similar players in similar match contexts, the
components (and thus the entities represented by that component) would be more
alike. We can now choose an entity and look for each component how its values
are distributed. When we take for example the team of a player as an entity, we
can examine the distribution of a component’s values for each team, i.e. we get one
distribution per team. When we do this for each component, we can see for which
components the values of different teams differ the most.

Approach We do this by first computing the player representations of the players
performing the action at each event of the test set. Then, we take each component
of the representations separately. The dimension of our player representations is
32, so there are 32 components in total. For a given component, we then obtain
different distributions of the component’s value for each value of the chosen entity.
Take for example the type of action as entity. For each type of action, we can obtain
the distribution of a certain component’s value. The easiest way to examine these
distributions is by visualizing them. A kernel density estimate (KDE) plot 1 is a
way to visualize continuous probability density curves of a distribution, which is
similar to a histogram, but smoothened. Each distribution can then be given a color
representing the value (or type) of the entity. If these different distributions for a
certain component do not have much overlap and their means lie far enough apart,
we can assume that the component models (a part of) that entity. We show this idea
for different entities.

Experiment 1: start-area as entity Figure 5.4 shows the distributions of three
components of the FAWSL 20/21 player embeddings using the start-area attribute
as entity. Many of the components look similar to that of component 0 in Figure
5.4 (A): the different distributions have lots of overlap and their peaks are located

1https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

47

https://seaborn.pydata.org/generated/seaborn.kdeplot.html#seaborn.kdeplot

5.2. Analysis of the player representations

around the same value. This means that, regardless of the start-area of the action,
most embeddings have a value of around -10 in their first component.

(a) (b) (c)

Figure 5.4: Visualization of the distributions of the value of three components
from the FAWSL 20/21 player embeddings, labelled by start-area of the action

In Figure 5.4 (B), we see that there is less overlap in the distributions of the own-box-
and box start-area and that they peak around different values for component 28 (the
own-box distribution peaks around -5 and the box distribution around 15). This
could mean that this component is (partly) responsible for modeling the y-coordinate
of the embeddings’ actions, because the box and own-box areas clearly have different
y-coordinates, while the other areas not necessarily do. The same can be said about
the x-coordinate of the action in component 24 (Figure 5.4 (C)). The distributions
of the left- and right-flank areas also show little overlap, and actions in these areas
differ most in their x-coordinate by definition. For the FAWSL 19/20 data, the same
phenomenon occurs, but at different components. As we can see in Figure 5.5 (A)
and (B), the left- and right-flank distributions are partially separated, meaning that
multiple components can have a share in modelling a certain attribute (y-coordinate
in this case). The figures for the La Liga data are similar and thus not shown here.

(a) (b) (c)

Figure 5.5: Visualization of the distributions of the value of three components
from the FAWSL 19/20 player embeddings, labelled by start-area of the action

Experiment 2: team as entity As the next entity to label the distributions, the
team of the player performing the action is used. Although the team id was left out
during training of the models (see Section 4.1), it was present in the original SPADL
data, so each action can be mapped to the team of the player who performed the

48

5.2. Analysis of the player representations

action. Figure 5.6 shows two components with a distribution for each team. Some
teams are distributed around different values (e.g. the West Ham distribution reaches
its peak around a value of -10 for component 20 and the one of Brighton around a
value of 15), while the distributions of some other teams show more overlap. For the
FAWSL 20/21 data, the observations are similar (see Figure 5.7), but less obvious
than the FAWSL 19/20 case. We do not show the La Liga figure because of its bias
for data of FC Barcelona, resulting in very high peaks for that team and smaller
ones for all other teams.

(a) (b)

Figure 5.6: Visualization of the distributions of the value of two components from
the FAWSL 19/20 player embeddings labelled by team

(a) (b)

Figure 5.7: Visualization of the distributions of the value of two components from
the FAWSL 20/21 player embeddings labelled by team

The t-SNE visualizations of all players labelled by the team of the acting player also
clearly shows clusters with embeddings of players of the same team (see Figure 5.8
for the FAWSL 19/20 and 20/21 data). It is thus clear that the player embeddings
contain some team information, even while the team labels were not used during
training. A reason for this could be the recurrence of the VaRLAE model. The
model might learn similar embeddings for players in the same sequence, and players
that appear in the same sequence often play for the same team.

49

5.2. Analysis of the player representations

(a) FAWSL 19/20 (b) FAWSL 20/21

Figure 5.8: Visualization of all player representations of the two FAWSL seasons,
labelled by team

Experiment 3: other entities Other entities that were experimented with are
action type, starting position, starting zone (a more general starting position, e.g.
midfield, defense, ...), starting side (side of the starting position: left, right or
center) and the body part type of the action. Many of the distributions in these
experiments showed much overlap, so likely none of these attributes is clearly defined
by a component of the embeddings. Figure 5.9 (A) shows the components with the
least overlapping distributions for the action-type entity. To not overload the figure,
all action types other than pass and dribble are given a ‘other’ label. This is fine for
the experiment because only the distributions of the pass and dribble action types
had some none-overlapping areas. In Figure 5.9 (B), we see the same thing using the
body part type as the entity. The only actions that were considered here are shots,
because most other actions are rarely done with body parts other than the foot. A
random component is chosen for the starting zone as entity (Figure 5.9 (C)), where
all distributions show much overlap (using FAWSL 19/20 data).

(a) action type (b) bodypart (c) starting zone

Figure 5.9: Visualization of the distributions of one component’s value labelled by
(A) action type, (B) body part and (C) starting zone

5.2.2 Making changes to player representations

In this section, we will conduct an experiment where a value of the player embedding
is changed. The new output of the decoder is then analyzed further, allowing us to

50

5.2. Analysis of the player representations

evaluate the importance of certain components in the decoder predictions.

Changing component values of the player representations The following
experiment was conducted to see what happens when we change the value of one
or more components in a player representation. We want to see which players the
decoder predicts when the value of the components that were correlated with the
player’s team is changed. For this, we select components 20 and 28 of the FAWSL
19/20 representations (see Figure 5.6). First, a ‘shot’ action that resulted in a goal is
selected. More specifically, we select a goal of Adriana Leon from West Ham United,
of which we compute the player representation. The distributions of West Ham
reach their peaks at values around -10 and 10 for components 20 and 28 respectively.
We now want to change these values to the ones of a distribution far away. The
distributions of Brighton & Hove Albion are chosen because its values lie the furthest
away from the West Ham distribution for component 20. The values of components
20 and 28 are set to 15 and 5 respectively, which is around where the distributions of
Brighton reach their peaks. The altered representation is then put into the decoder,
whose softmax output represents the probability of a player performing the action.
The output is ordered by decreasing probability, and the top-5 of predicted players
along with their team is shown in Table 5.6. The predictions from the original player
representation are shown for comparison in Table 5.7.

Rank Name Team
1 Lisa Evans Arsenal
2 Kayleigh Green Brighton
3 Rebecca Jane Liverpool
4 Ellie Brazil Brighton
5 Loren Dykes Bristol City

Table 5.6: Top-5 predictions of
the changed player representation

Rank Name Team
1 Adriana Leon West Ham
2 Cecilie Kvamme West Ham
3 Angharad James Reading
4 Alisha Lehmann West Ham
5 Rachel Rowe Reading

Table 5.7: Top-5 predictions of
the original player representation

The decoder output from the original player representation ranked Adriana Leon as
the player with the highest probability of performing the input action, as desired.
Changing values in the player embedding results in a totally different prediction. The
top predicted player is Lisa Evans, a forward at Arsenal, followed by Kayleigh Green,
who is a forward at Brighton & Hove Albion. Interestingly, Brighton was also the
team from which the distributions were chosen to base the new values on. Another
Brighton forward, Ellie Brazil, appears in fourth position in the list. This is again
an indication that there is team information embedded in the player representations.

51

Chapter 6

Using the player representations

in downstream tasks

We now investigate whether our player representations can be useful in two down-
stream tasks. We first check whether the representations can be used to find players
that are similar to a target player. Lastly, we test their applicability in the VAEP
framework.

6.1 Finding similar players

To find players that are similar to a target player, we make up a ranking that
orders the players based on the similarity (Manhattan distance) of their player
representations with the representation of the target player. In Section 4.2.4, the
rankings were constructed from the different representations for each action the player
performs. Because we want to make one ranking for a player based on all his/her
actions, we take the mean of the action-specific embeddings to get one representation
per player.

Experiment 1: La Liga players Table 6.1 and 6.2 show the rankings of Marc-
André Ter Stegen (goalkeeper at FC Barcelona) and Gerard Piqué (centre-back at
FC Barcelona). Ter Stegen appears at the top of his own list and the other players
that appear are all goalkeepers, except for Clément Lenglet, who is also a centre-back
at FC Barcelona. While it is hard to compare a goalkeeper’s style, the ranking shows
that the VaRLAE model is able to find similarities between players in the same
position. The ranking of similar players to Gerard Piqué also puts Piqué himself at
the top, but the rest of the players are not all players who are known to be similar
to him. VaRLAE puts many players that played for FC Barcelona that season high
in the list. The model can still find similarities based on the position of the players
reasonably well, as most of the players in this list are also defenders. Some players
that are not really comparable in terms of playing style, but that play in the same
team are ranked higher than players from a different team who play in the same

52

6.1. Finding similar players

position as Piqué, e.g. Ivan Rakitić (a midfielder from FC Barcelona that season) is
ranked higher than Kenneth Omeruo (a centre back from CD Leganés).

Rank Name
1 Marc-André Ter Stegen
2 Pichu
3 Neto
4 Jan Oblak
5 Fernando Pacheco
6 Marko Dmitrović
7 Tomáš Vacĺık
8 Diego López
9 Clément Lenglet
10 Joel Robles

Table 6.1: Top-10 most similar play-
ers to Marc-André Ter Stegen

Rank Name
1 Gerard Piqué
2 Jean-Clair Todibo
3 Ronald Araújo
4 Sergi Roberto
5 Ivan Rakitić
6 Moussa Wagué
7 Kenneth Omeruo
8 Emerson
9 Ander Iturraspe
10 Sergio Busquets

Table 6.2: Top-10 most similar play-
ers to Gerard Piqué

Experiment 2: FAWSL players We do the same thing for Vivianne Miedema,
striker at Arsenal WFC, using the FAWSL 20/21 data (Table 6.3). Miedema appears
at the top of the list, and the other players are mostly Arsenal players. Forwards
(Caitlin Foord, Bethany Mead, Chloe Kelly, ...) are ranked higher on average than
players from other positions, which is a good sign when comparing to a forward.
Because we want to see which players from other teams are similar to our target
player, we exclude Arsenal WFC players to create the ranking in Table 6.4. The
top-10 consists mostly of strikers and forwards, except for Rosemary Lavelle who is
an attacking midfielder. This demonstrates that, when players from the same team
are excluded, the learned player embeddings can be used to find similar players.

Rank Name
1 Vivianne Miedema
2 Caitlin Jade Foord
3 Jill Roord
4 Bethany Mead
5 Danielle van de Donk
6 Chloe Kelly
7 Jordan Nobbs
8 Ellen White
9 Kim Little
10 Leonie Maier

Table 6.3: Top-10 most similar play-
ers to Vivianne Miedema

Rank Name
1 Chloe Kelly
2 Ellen White
3 Georgia Stanway
4 Rosemary Kathleen Lavelle
5 Jessica Park
6 Lauren Hemp
7 Francesca Kirby
8 Janine Elizabeth Beckie
9 Bethany England
10 Pernille Mosegaard Harder

Table 6.4: Top-10 most similar play-
ers to Vivianne Miedema, excluding
Arsenal WFC players

53

6.2. Using the player representations in VAEP

6.2 Using the player representations in VAEP

VAEP was introduced in Section 3.2 as a framework for valuing player actions and
rating player’s performances. Intuitively, knowing which player performs the action
can be useful information for valuing the action. It was already mentioned earlier
that the underlying scoring probabilities were used as a way to evaluate the model.
When the characteristics of a player performing an action are known, the predicted
scoring probability can be adjusted to those characteristics. For example, when the
action in question is a free-kick shot, it is more likely that the ball goes in when it
is taken by Lionel Messi than when some other player takes it. We now evaluate
the performance of VAEP when the learned player representations are added to the
feature set.

Experiment setup The data format and features used for training a VAEP model
are very similar to what was used in training the VAE architectures. It also consists
of actions described by a number of features in the SPADL format, where complex-
and game context features are added to. There are two options for adding the
representations to the VAEP model that are both experimented with:

1. A different player representation is computed for each action, so we add each
action-specific representation as an extra feature to the data

2. One player representation per player, by taking the mean of all representations
for each player

When a different representation is used for each action, some actions will be left out
in the training and testing data. This is because of the way the input sequences
of the VaRLAE model are defined (i.e. the same as for the CVRNN in Section
4.3.1). For each sequence, a representation is computed only for the final action in
the sequence, so we get a representation for each action in a game except for the
first nine actions (because of the shifting with which the sequences were obtained).
Since VAEP models are trained with an XGBoost classifier 1, which can only handle
numerical or boolean features, the player representation vectors are split up into 32
components. Each action thus gets 32 new features, where each of them represents
one component of the player representation.

We now train different VAEP models on the La Liga, FAWSL 19/20 and FAWSL
20/21 data. We do this for the original features, as well as the extension with our
player representations. Models with one player representation for each player and
models with a representation for each action are both examined. Because the models
with a representation for each action train on fewer data than the other models, we
also train a standard VAEP model (without representations) on the same (reduced)
data, to allow for fair comparison. For each configuration, we perform a grid search
to tune the parameters of the XGBoost classifiers. A classifier is trained for each
combination of hyperparameters, and the classifier with the best results is kept.

1https://xgboost.readthedocs.io/en/stable/python/python_api.html

54

https://xgboost.readthedocs.io/en/stable/python/python_api.html

6.2. Using the player representations in VAEP

Evaluation metrics The scoring function to use for choosing the best classifier is
the Brier score in this case. The Brier score measures the calibration of the predictions,
so that a lower Brier score means that the predicted probability distribution is closer
to the actual one, i.e. that the predictions are better calibrated. Other metrics that
are often used in probabilistic classifiers are AUROC and logarithmic loss. AUROC
(Area Under the ROC-curve) is useful when classifying or ranking examples, but
ignores the values of the predicted probabilities. Logarithmic loss measures the
accuracy of the obtained predictions and is similar to the Brier score in the way that
they can be minimized (like the Brier score, a lower log-loss is better). Decroos [28]
argues that the Brier score is the most important metric to optimize here, because
individual prediction errors are summed rather than multiplied like in logarithmic
loss, which is appropriate when the resulting probabilities will be summed (e.g. for
obtaining player ratings). In Table 6.5, we report all three metrics for comparing
the standard and extended VAEP models, but mainly look at the Brier score. The
predicted scoring- and conceding probabilities are evaluated for the standard VAEP
model and the models extended with player representations. In each column, we
compare different models:

(A) Compares the standard VAEP model trained on all data to the VAEP model
extended with the mean player representations (option 2)

(B) Compares the standard VAEP model trained on fewer data (as explained
earlier) to the VAEP model extended with per-action player representations
(option 1)

Results The results for the VAEP model extended with one representation per
player are fairly mixed. For the scoring probability models, the extension achieves
better Brier scores on the La Liga and FAWSL 19/20 datasets. Except for the
logarithmic loss on the FAWSL 19/20 data, the standard VAEP models achieve
better scores on the other metrics. Only on the La Liga data, the extension achieves
a better Brier score for the conceding probability model. The results on other metrics
are mixed. For the VAEP models extended with a different representation per action,
the results are already a lot better. The extended version achieves a better or
equal Brier score on both the scoring- and conceding models for all competitions,
although the differences are small. The results for the other metrics are generally
in favor of standard VAEP, except for the conceding model on the FAWSL 20/21
data. A reason for this can be that during the grid search, the configuration with
the best Brier score is chosen, so other configurations may still achieve better scores
on the other metrics. We can conclude that extending VAEP with per-action player
embeddings is an improvement to the standard VAEP model when the Brier score
is put forward as the most important metric to optimize. The extension with one
player embedding per player only works in some cases, so it is not the preferred option.

55

6.2. Using the player representations in VAEP

La Liga
Standard
VAEP

Extended
VAEP

(one per player)

Standard
VAEP

Extended
VAEP

(one per action)

Scores

Brier
score

0.00886 0.00878 0.00882 0.00874

Logarithmic
loss

0.04850 0.04907 0.04827 0.04818

AUROC 0.74792 0.72707 0.75248 0.74972

Concedes

Brier
score

0.00165 0.00164 0.00164 0.00164

Logarithmic
loss

0.01235 0.01228 0.01126 0.01530

AUROC 0.77151 0.66412 0.79050 0.75177
(A) (B)

FAWSL 19/20
Standard
VAEP

Extended
VAEP

(one per player)

Standard
VAEP

Extended
VAEP

(one per action)

Scores

Brier
score

0.00796 0.00790 0.00797 0.00795

Logarithmic
loss

0.04234 0.04199 0.04227 0.04237

AUROC 0.81414 0.81178 0.81722 0.80935

Concedes

Brier
score

0.00267 0.00270 0.00268 0.00268

Logarithmic
loss

0.01795 0.01851 0.01801 0.02287

AUROC 0.69456 0.67261 0.70166 0.64346
(A) (B)

FAWSL 20/21
Standard
VAEP

Extended
VAEP

(one per player)

Standard
VAEP

Extended
VAEP

(one per action)

Scores

Brier
score

0.01058 0.01064 0.01067 0.01065

Logarithmic
loss

0.05300 0.05373 0.05345 0.05364

AUROC 0.82110 0.81025 0.81966 0.81526

Concedes

Brier
score

0.00277 0.00279 0.00280 0.00277

Logarithmic
loss

0.01723 0.01718 0.01744 0.01726

AUROC 0.78806 0.81159 0.78909 0.79554

(A) (B)

Table 6.5: Brier score, logarithmic loss and AUROC score comparison between (A)
the standard VAEP model and the VAEP model extended with one representation
per player and (B) the standard VAEP model (trained on fewer data) and the VAEP
model extended with a different representation for each action

56

6.2. Using the player representations in VAEP

Rating players The extension of VAEP with player representations can also
be evaluated by looking at the player ratings that the VAEP framework produces.
An ordered list of the top-10 players of the FAWSL 20/21 season based on the
player ratings of the standard- and the extended model is given in Table 6.6 and 6.7
respectively.

Rank Name
VAEP
value

1 Caroline Weir 7.265
2 Samantha Kerr 6.696
3 Lauren Hemp 6.001
4 Alex Greenwood 5.306
5 Stephanie Houghton 5.022
6 Chloe Kelly 4.712
7 Francesca Kirby 4.228
8 Katie McCabe 4.180
9 Caitlin Jade Foord 4.140
10 Vivianne Miedema 3.964

Table 6.6: Top-10 players of the
FAWSL 20/21 season ranked by
VAEP value of the standard model

Rank Name
VAEP
value

1 Samantha Kerr 8.007
2 Caroline Weir 7.013
3 Lauren Hemp 5.983
4 Stephanie Houghton 5.585
5 Alex Greenwood 5.471
6 Francesca Kirby 4.853
7 Vivianne Miedema 4.765
8 Katie McCabe 4.658
9 Caitlin Jade Foord 4.598
10 Chloe Kelly 4.473

Table 6.7: Top-10 players of
the FAWSL 20/21 season ranked
by VAEP value of the model ex-
tended with player representations

Both rankings contain exactly the same players, but some appear in a different order.
The ranks of Sam Kerr and Caroline Weir are switched in the extended model, with
Kerr taking the top spot. Both were included in the FAWSL team of the year [29],
but Kerr also finished third in the Ballon d’Or that year behind Alexia Putellas and
Jennifer Hermoso of FC Barcelona [30], so giving her the top spot seems justified.
Francesca Kirby, who won the PFA Player of the Year [31] as well as the Barclays
FA WSL Player of the Season [32] award, is ranked higher by the extended VAEP
model. Vivianne Miedema also jumps three places in the second ranking, which is
perhaps rightly so, given that she finished second in the top-scorers ranking with 18
goals that season, only three goals less than Sam Kerr.

57

Chapter 7

Conclusion

7.1 Summary

This thesis discussed an approach for building a model that learns contextualized
soccer player representations from event stream data, along with an analysis of these
representations and a series of experiments where they are used in down-stream
soccer analytics tasks. Three models were built for the task, each one being an
improvement on the last.

The first model was an extension to a Variational Autoencoder, the Conditional
Variational Autoencoder (CVAE), which takes the match context in which players
act as an extra input. The player representations condition on this extra con-
text input, so that we get different representations under different game situations.
The representations learned by this model could not be distinguished well based
on the intuitions of which players are similar, and its performance on the player
de-anonimization task was also insufficient. The second model, the Conditional
Variational Recurrent Neural Network (CVRNN), built further on the CVAE by
adding play history through the usage of Recurrent Neural Networks (RNNs). While
this model achieved a better accuracy, it suffered from the problem of posterior
collapse, where the decoder barely uses the latent space representations and thus only
the context variables for the prediction of the acting player. This problem rendered
the player representations useless, which was confirmed by its poor performance
on the player de-anonimization task. The final model, the Variational Recurrent
Ladder Agent Encoder (VaRLAE), solved the posterior collapse problem by splitting
the latent space into three components, which made sure that the latent space
embeddings contain useful information about the acting player. The representations
learned by the VaRLAE model perform well on the player de-anonimization task,
achieving a larger MRR than the representations of SoccerMix on the same data.
Visualizations of the embeddings also made sense intuitively, as embeddings of the
same player and of different players in the same position were often clustered together.

After building the models, we experimented with their player representations (espe-

58

7.2. Future work

cially the ones of the VaRLAE model). Experiments with different hyperparameters
and components of the VaRLAE model led us to the conclusion that performance
varies only slightly when using different learning rates or latent space dimensions, and
that the usage of a warm-up period during training often gave a better performance
but could sometimes result in an unstable model. The usage of batch normaliza-
tion also seemed crucial for the model’s performance. Then, the obtained player
representations were analyzed further, where it was observed that some components
of the representations showed a positive correlation with entities like the player’s
team and the starting area of his/her actions. The influence of the player’s team
became even more apparent when lists of the most similar players to a certain
player were retrieved, which showed a lot of players from the same team along with
players of the same position. Changing certain components of the embeddings that
are suspected to be correlated with the team resulted in different players being
predicted at the decoder. Finally, we used the player representations as an extra
feature in the VAEP framework for player ratings and valuing actions. Including the
player representations resulted in better Brier scores of the underlying scoring- and
conceding probability model, but the scores of other metrics were worse in some cases.

In general, the player representations learned by the VaRLAE model achieve good
results when trying to identify the acting player based on their representations, which
shows that the model can distinguish players based on the actions that they perform
in which match contexts. Because the representations of players in the same team are
similar, finding players with a similar playing style is not straightforward using only
the embeddings, although players in the same position are found when we look past
that. The improved performance of VAEP extended with the player representations
suggests that they could be used in other soccer analytics tasks as well.

7.2 Future work

While we already achieved some satisfactory results, there is a lot left to experiment
with and to use the VaRLAE model along with its player representations in. The
first thing that can be done is to test the applicability of player representations in
other soccer analytics tasks. One such task is expected goals estimation. Expected
goals (xG) is a metric that gives a value to a shot based on how likely it is to result in
a goal. Classic features on which xG models are trained are match context features
like location on the field, actions preceding the shot, etc.[33] Adding player represen-
tations as an extra feature to those models could definitely give an improvement,
given the intuition that shots coming from certain players have a bigger chance of
resulting in a goal than from some other players, which could be captured in the
representations. Another task where the player representations could be useful as
an additional feature is score difference prediction (as is also done by Liu et al. [3]
for ice hockey) or win probability models, where a team’s chances at winning is
computed at any point in the game.

59

7.2. Future work

A logical extension to player representations that was not studied in this thesis
are team representations. Instead of learning representations of single players, the
model could learn representations that capture the playing style of a whole team.
The current player representations learned by the VaRLAE model could also be
further improved. While the goal was to capture similarities between players in
terms of playing style, the model mainly finds players of the same team to be similar.
Representations that depend less on this property would already be more useful.

Finally, it could be investigated how to turn the player representations into more
human-interpretable vectors, where the components represent meaningful entities.
This would allow the representations to be used in various other tasks like comparing
players’ styles, monitoring player development (i.e. observing how player representa-
tions change over time) or in game analysis, e.g. identifying what went wrong in a
defeat by comparing the representations with those of a win. The applicability in
these tasks with the current player representations is limited because of the lack of
interpretability of the embeddings.

60

Acknowledgements

We thank StatsBomb for providing the data sets used in this work. We thank the
RBFA for the gracious support and feedback.

61

Bibliography

[1] Tom Decroos and Jesse Davis. Player vectors: Characterizing soccer players’
playing style from match event streams. volume 11908. Brefeld, U, Springer,
2020.

[2] Tom Decroos, Maaike Van Roy, and Jesse Davis. Soccermix: Representing
soccer actions with mixture models. volume 12461, pages 459–474. Dong, Y,
Springer, 2021.

[3] Guiliang Liu, Oliver Schulte, Pascal Poupart, Mike Rudd, and Mehrsan Javan.
Learning agent representations for ice hockey. In Advances in Neural Information

Processing Systems 33: Annual Conference on Neural Information Processing

Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[4] Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. Actions speak
louder than goals: Valuing player actions in soccer. In Proceedings of the 25th

ACM SIGKDD International Conference on knowledge discovery data mining,
KDD ’19, pages 1851–1861. ACM, 2019.

[5] Joseph Rocca. Understanding Variational Autoencoders (VAEs).
https://towardsdatascience.com/understanding-variational-

autoencoders-vaes-f70510919f73, 2019.

[6] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing data using t-SNE.
Journal of machine learning research, 9:2579–2625, 2008.

[7] IBM Cloud Education. Neural Networks. https://www.ibm.com/cloud/learn/
neural-networks, 2020.

[8] Alireza Makhzani and Brendan Frey. k-sparse autoencoders. 2013.

[9] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Y. Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the 28th International Conference on Machine Learning, 2011.

[10] Pascal Vincent, Hugo Larochelle, Y. Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, pages
1096–1103, 2008.

62

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks

Bibliography

[11] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2013.

[12] Jacob Walker, Carl Doersch, Abhinav Gupta, and Martial Hebert. An uncertain
future: Forecasting from static images using variational autoencoders. 2016.

[13] Tom White. Sampling generative networks: Notes on a few effective techniques.
CoRR, abs/1609.04468, 2016.

[14] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven continuous representation
of molecules. ACS Central Science, 4(2):268–276, 2018. PMID: 29532027.

[15] Weng, Lilian. From Autoencoder to Beta-VAE. https://lilianweng.github.
io/posts/2018-08-12-vae/, 2018.

[16] Harri Valpola. From neural pca to deep unsupervised learning. 2014.

[17] Michael L. Littman. Markov games as a framework for multi-agent reinforce-
ment learning. In Machine Learning Proceedings 1994, pages 157–163. Morgan
Kaufmann, San Francisco (CA), 1994.

[18] StatsBomb. https://statsbomb.com. Accessed: 3/5/2022.

[19] Stats Perform. https://www.statsperform.com/opta/. Accessed: 3/5/2022.

[20] Wyscout. https://wyscout.com. Accessed: 3/5/2022.

[21] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output
representation using deep conditional generative models. In NIPS, 2015.

[22] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz,
and Samy Bengio. Generating sentences from a continuous space. CoRR, 2015.

[23] Chao chao Yan, Sheng Wang, Jinyu Yang, Tingyang Xu, and Junzhou Huang.
Re-balancing variational autoencoder loss for molecule sequence generation.
Proceedings of the 11th ACM International Conference on Bioinformatics, Com-

putational Biology and Health Informatics, 2020.

[24] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and
Lawrence Carin. Cyclical annealing schedule: A simple approach to mitigating
KL vanishing. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, volume 1, pages 240–250, 2019.

[25] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C
Courville, and Yoshua Bengio. A recurrent latent variable model for sequential
data. In Advances in Neural Information Processing Systems, volume 28, pages
2980–2988, 2015.

63

https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://statsbomb.com
https://www.statsperform.com/opta/
https://wyscout.com

Bibliography

[26] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby,
and Ole Winther. Ladder variational autoencoders. In Advances in Neural

Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[27] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. 2015.

[28] Tom Decroos. Soccer analytics meets artificial intelligence: Learning value and
style from soccer event stream data, 2020.

[29] Sky Sports. Chelsea players, including Fran Kirby and Sam Kerr, dominate
PFA WSL Team of the Year. https://www.skysports.com/football/news/
28508/12324582/chelsea-players-including-fran-kirby-and-sam-kerr-

dominate-pfa-wsl-team-of-the-year, 2021.

[30] BBC. Women’s Ballon d’Or: Alexia Putellas wins award for being best female
footballer in 2021. https://www.bbc.com/sport/football/59468815, 2021.

[31] BBC. PFA Player of the Year: Chelsea’s Fran Kirby wins award for second
time. https://www.bbc.com/sport/football/57373958, 2021.

[32] www.standard.co.uk. Chelsea FC pair Fran Kirby and Emma
Hayes win WSL Player and Manager of the Season awards. https:

//www.standard.co.uk/sport/football/chelsea-fc-fran-kirby-emma-

hayes-wsl-player-of-the-season-manager-b936957.html, 2021.

[33] Michael Caley. Premier League Projections and New Expected Goals.
https://cartilagefreecaptain.sbnation.com/2015/10/19/9295905/

premier-league-projections-and-new-expected-goals, 2015.

64

https://www.skysports.com/football/news/28508/12324582/chelsea-players-including-fran-kirby-and-sam-kerr-dominate-pfa-wsl-team-of-the-year
https://www.skysports.com/football/news/28508/12324582/chelsea-players-including-fran-kirby-and-sam-kerr-dominate-pfa-wsl-team-of-the-year
https://www.skysports.com/football/news/28508/12324582/chelsea-players-including-fran-kirby-and-sam-kerr-dominate-pfa-wsl-team-of-the-year
https://www.bbc.com/sport/football/59468815
https://www.bbc.com/sport/football/57373958
https://www.standard.co.uk/sport/football/chelsea-fc-fran-kirby-emma-hayes-wsl-player-of-the-season-manager-b936957.html
https://www.standard.co.uk/sport/football/chelsea-fc-fran-kirby-emma-hayes-wsl-player-of-the-season-manager-b936957.html
https://www.standard.co.uk/sport/football/chelsea-fc-fran-kirby-emma-hayes-wsl-player-of-the-season-manager-b936957.html
https://cartilagefreecaptain.sbnation.com/2015/10/19/9295905/premier-league-projections-and-new-expected-goals
https://cartilagefreecaptain.sbnation.com/2015/10/19/9295905/premier-league-projections-and-new-expected-goals

	Preface
	Abstract
	Samenvatting
	List of Abbreviations
	Introduction
	Problem
	Approach
	Overview

	Background
	Dimensionality reduction
	Neural Networks and RNNs
	Autoencoder
	Variational Autoencoder

	Related work
	Characterizing playing style
	Valuing actions using VAEP

	Methodology
	Data
	Model 1: CVAE
	Model 2: CVRNN
	Model 3: VaRLAE

	Experiments
	Experiments on the VaRLAE model
	Analysis of the player representations

	Using the player representations in downstream tasks
	Finding similar players
	Using the player representations in VAEP

	Conclusion
	Summary
	Future work

	Acknowledgements
	Bibliography

