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Clustering is subjective,
a black box system cannot work

data clustering system clustering
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Semi-supervised clustering systems rely on
interaction in the form of pairwise queries

Should and be in the same cluster?

data clustering satisfactory?
Yessemi-supervised

clustering system

Query the user No constraints
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Such an interactive workflow requires the clustering system to be:

1. anytime: the user can stop and get the best result so far at any time

2. query-efficient: few queries before a reasonable result is obtained

3. time-efficient: user should not have to wait long between answering queries

COBRAS satisfies these requirements ,

T. Van Craenendonck, S. Dumancic, E. Van Wolputte, H. Blockeel. COBRAS: Interactive clustering with pairwise queries. IDA 2018

T. Van Craenendonck, S. Dumancic, H. Blockeel. COBRA: A fast and simple method for active clustering with pairwise constraints. IJCAI 2017
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Two key ideas in COBRAS

1. COBRAS uses super-instances
= sets of instances that are temporarily assumed

to belong to the same cluster
= intermediate level between instances and clusters

2. It dynamically refines these super-instances during clustering
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COBRAS pseudocode & example

Input: X : a dataset, q: a query limit
Output: C: a clustering of D
1: ML = ∅,CL = ∅
2: S = {X},C = {S}, C = {C}
3: while |ML| + |CL| < q do
4: Ssplit ,Corigin = arg maxS∈C ,C∈C |S|
5: k,ML,CL =

determineSplitLevel(Ssplit ,ML,CL)
6: Snew1 , . . . , Snewk = K-means(Ssplit , k)
7: Corigin = Corigin \ {Ssplit}
8: C = C ∪ {{Snew1}, . . . , {Snewk }}
9: C,ML,CL = COBRA(C,ML,CL)

10: end while
11: return C

S1

C1
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Problem: COBRAS is not suited for time series clustering out-of-the-box

1. It defines super-instance medoids w.r.t. the Euclidean distance

2. It uses K-means to refine super-instances

→ both of these are sub-state-of-the-art for time series clustering

Solution: Upgrade COBRAS to use distance measure
and clustering method suitable for time series

→ We refer to this approach as COBRASTS
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We propose two instantiations of COBRASTS

COBRASkShape

COBRAS with the following substitutions:
Euclidean distance → shape-based distance
k-means → k-Shape

COBRASDTW

Input: X : a dataset
w : the DTW warping window width
γ: kernel width for converting distances to similarities

Output: A clustering

1: Compute the full pairwise DTW distance matrix of X
2: Convert each distance d to an affinity a: ai,j = e−γdi,j

3: Run COBRAS, substituting K-means for splitting super-instances with
spectral clustering on the previously computed affinity matrix
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Experimental setup

- UCR time series archive: 85 datasets from diverse domains

- Classes are assumed to represent the clusters of interest, clusterings
are evaluated by computing the adjusted Rand index (ARI) on the
test set in 10-fold CV

- Comparing COBRASTS to

cDTWSS: Uses constraints to select window width w in cDTW

“Choosing w is critical, and dwarfs any effect of the choice of algorithm.”

COBS: Uses constraints to select and tune an unsupervised algorithm

k-Shape: k-means variant for time series

k-MultiShape: similar to k-Shape, but with multiple centroids per cluster;

state-of-the-art for unsupervised time series clustering
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Experimental results
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Answering pairwise queries
can substantially improve clustering quality!
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Clustering the CBF dataset

We are interested in separating downward, horizontal and upward patterns
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Clustering the CBF dataset

Clustering obtained with cDTWSS

Clustering obtained with kShape
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Specifically for CBF, we found an additional reason

why COBRASTS outperforms other systems.

Clustering CBF is difficult as it contains clusters with separated components.
Existing algorithms cannot deal with this.

DTW = 8.04 DTW = 6.42

DTW = 12.33
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Separated components

This is not a problem for COBRASTS: components are captured by super-instances,
which are grouped into the same cluster through a must-link constraint
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Separated components
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Coherent clusters may become incoherent when projected onto a subspace
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Conclusion

We introduce COBRASTS, an adaptation of COBRAS for time series

Our experimental evaluation shows that:

- Time series clustering can benefit greatly from small amounts of supervision,
COBRASTS outperforms competitors by a large margin.

- COBRASTS can detect clusters with separated components, and this can be
beneficial in time series clustering

- The choice of the clustering algorithm matters (contrary to prior claims)

- COBRASTS allows the user to interactively cluster time series data
→ We show this with a concrete demo implementation

https://dtai.cs.kuleuven.be/software/cobras/
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