

COBRA A Fast and Simple Method for Active Clustering with Pairwise Constraints

Toon Van Craenendonck, Sebastijan Dumančić and Hendrik Blockeel {firstname.lastname}@kuleuven.be

Overview

1 Problem setting

2 COBRA: Constraint-based Repeated Aggregation

3 Related work

Problem setting

Problem: clustering is inherently subjective

Solution: obtain limited supervision from user

Semi-supervised clustering methods exploit pairwise constraints to produce clusterings that are more aligned with the user's preferences

We obtain a must-link constraint if the answer is yes, a cannot-link otherwise

By **actively** selecting informative pairwise queries, we aim to produce a good clustering using as little supervision as possible

Most naive strategy: query all pairwise relations

Given all pairwise relations, identifying clusters is trivial

This requires $\binom{n}{2}$ queries $\textcircled{\odot}$

Improvement 1: exploit transitivity and entailment

Query random pairs. Each time a new constraint is obtained, the constraint set is extended by applying entailment and transitivity.

Entailment: cannot-link $(A, D) \land must-link(D, E) \Rightarrow cannot-link(A, E)$ Transitivity: must-link $(A, B) \land must-link(B, C) \Rightarrow must-link(A, C)$

Improvement 2: querying closest pairs first

Query the closest pairs first. Each time a new constraint is obtained, the constraint set is extended by applying entailment and transitivity.

Improvement 2: querying closest pairs first

Query the closest pairs first. Each time a new constraint is obtained, the constraint set is extended by applying entailment and transitivity.

Improvement 3: introduce super-instances

Introduce **super-instances**: small local regions in the data that are assumed to be grouped together in all potential clusterings

COBRA (for Constraint-based Repeated Aggregagation):

- 1. Construct super-instances
- 2. Aggregate these super-instances into clusters by repeatedly querying pairwise relations between them

Constraint-based Repeated Aggregation

Require: D: a dataset, N_S : the number of super-instances **Ensure:** a clustering of D

Ensure: a clustering of D

- 1: Construct N_S super-instances by over-clustering D using K-means
- 2: Initially, each (partial) cluster consists of a single super-instance
- 3: while the clustering changed do
- 4: Let *L* be the list of all pairs of partial clusters between which the relation is not known yet, sorted by their pairwise distance
- 5: for $P_1, P_2 \in L$ do
- 6: Query the relation between partial clusters P_1 and P_2
- 7: if a must-link relation is obtained then
- 8: merge P_1 and P_2 into a new partial cluster
- 9: break
- 10: end if
- 11: end for
- 12: end while
- 13: return the current clustering

- 1. Construct super-instances
 - over-cluster the data using K-means
- 2. Aggregate these super-instances into clusters
 - by querying the pairwise relations between their medoids

- 1. Construct super-instances
 - over-cluster the data using K-means
- 2. Aggregate these super-instances into clusters
 - by querying the pairwise relations between their medoids

- 1. Construct super-instances
 - over-cluster the data using K-means
- 2. Aggregate these super-instances into clusters
 - by querying the pairwise relations between their medoids

Related work

Existing work on active semi-supervised clustering

- Existing semi-supervised clustering methods
 - modify the clustering objective/procedure of an unsupervised algorithm (e.g. COP-Kmeans, COSC, FOSC-OpticsDend, ...)
 - or learn a metric, which is then used in an unsupervised algorithm (e.g. Xing et al., ITML, ...)

↕

COBRA is not a direct extension of an existing unsupervised algorithm

• Can use a separate active selection component that is typically based on **uncertainty sampling** (e.g. MinMax, NPU, ...)

\$

COBRA is inherently active

Experiments

Experiments

- Classification datasets: classes are assumed to represent the clustering of interest
- 21 clustering tasks, evaluated by computing ARI in 5-fold cross-validation
- Comparing COBRA to state-of-the-art competitors MPCKMeans and COSC, both combined with the MinMax (MM) and NPU active selection strategies

Average ranks for quality (* denotes statistical significance)

25 super-instances		100 super-instances	
COBRA MPCK-NPU MPCK-MM COSC-MM* COSC-NPU*	2.43 3.00 3.07 3.12 3.40	COBRA COSC-NPU* MPCK-NPU* MPCK-MM* COSC-MM*	2.52 2.98 3.00 3.19 3.31

Runtimes on 21 clustering tasks

Conclusion

Conclusion

We introduce COBRA, a method for active semi-supervised clustering.

COBRA first over-clusters the data into super-instances, and then merges these super-instances into clusters based on pairwise constraints.

COBRA

- + produces high quality clusterings, compared to competitors
- + is fast, as it relies on a single run of K-means
- + does not require knowing the number of clusters beforehand
 - does require setting the number of super-instances
 - does not always produce high quality intermediate clusterings

Implementation available at https://dtai.cs.kuleuven.be/software/cobra/

Number of queries

Performance for increasing number of super-instances

