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Section 1

Problem setting
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Problem: clustering is inherently subjective
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Solution: obtain limited supervision from user

Semi-supervised clustering methods exploit pairwise constraints to produce

clusterings that are more aligned with the user’s preferences

query: Should and be in the same cluster?

We obtain a must-link constraint if the answer is yes, a cannot-link otherwise

By actively selecting informative pairwise queries, we aim to produce a
good clustering using as little supervision as possible
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Section 2

COBRA: Constraint-based Repeated Aggregation
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Most naive strategy: query all pairwise relations

Given all pairwise relations, identifying clusters is trivial ,
This requires

(n
2

)
queries /
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Improvement 1: exploit transitivity and entailment

Query random pairs. Each time a new constraint is obtained, the constraint set is
extended by applying entailment and transitivity.

Entailment: cannot-link(A,D) ∧ must-link(D,E ) ⇒ cannot-link(A,E )
Transitivity: must-link(A,B) ∧ must-link(B,C ) ⇒ must-link(A,C )
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Improvement 2: querying closest pairs first

Query the closest pairs first. Each time a new constraint is obtained, the
constraint set is extended by applying entailment and transitivity.
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Improvement 3: introduce super-instances

Introduce super-instances: small local regions in the data that are assumed to
be grouped together in all potential clusterings

COBRA (for Constraint-based Repeated Aggregagation):

1. Construct super-instances

2. Aggregate these super-instances into clusters by repeatedly querying
pairwise relations between them
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COBRA: Constraint-based Repeated Aggregation

Constraint-based Repeated Aggregation

Require: D: a dataset, NS : the number of super-instances
Ensure: a clustering of D
1: Construct NS super-instances by over-clustering D using K-means
2: Initially, each (partial) cluster consists of a single super-instance
3: while the clustering changed do
4: Let L be the list of all pairs of partial clusters between which the relation is not known

yet, sorted by their pairwise distance
5: for P1,P2 ∈ L do
6: Query the relation between partial clusters P1 and P2

7: if a must-link relation is obtained then
8: merge P1 and P2 into a new partial cluster
9: break

10: end if
11: end for
12: end while
13: return the current clustering
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COBRA: Constraint-based Repeated Aggregation

1. Construct super-instances

I over-cluster the data using K-means

2. Aggregate these super-instances into clusters

I by querying the pairwise relations between their medoids

?
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Section 3

Related work
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Existing work on active semi-supervised clustering

Existing semi-supervised clustering methods

I modify the clustering objective/procedure of an unsupervised algorithm
(e.g. COP-Kmeans, COSC, FOSC-OpticsDend, . . . )

I or learn a metric, which is then used in an unsupervised algorithm
(e.g. Xing et al. , ITML, . . . )

l

COBRA is not a direct extension of an existing unsupervised algorithm

Can use a separate active selection component that is typically based on
uncertainty sampling (e.g. MinMax, NPU, . . . )

l

COBRA is inherently active
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Section 4

Experiments
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Experiments

Classification datasets: classes are assumed to represent the clustering of interest

21 clustering tasks, evaluated by computing ARI in 5-fold cross-validation

Comparing COBRA to state-of-the-art competitors MPCKMeans and COSC,
both combined with the MinMax (MM) and NPU active selection strategies

Average ranks for quality
(* denotes statistical significance)

25 super-instances 100 super-instances

COBRA 2.43 COBRA 2.52
MPCK-NPU 3.00 COSC-NPU* 2.98
MPCK-MM 3.07 MPCK-NPU* 3.00
COSC-MM* 3.12 MPCK-MM* 3.19
COSC-NPU* 3.40 COSC-MM* 3.31
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Section 5

Conclusion
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Conclusion

We introduce COBRA, a method for active semi-supervised clustering.

COBRA first over-clusters the data into super-instances, and then merges these
super-instances into clusters based on pairwise constraints.

COBRA

+ produces high quality clusterings, compared to competitors

+ is fast, as it relies on a single run of K-means

+ does not require knowing the number of clusters beforehand

- does require setting the number of super-instances

- does not always produce high quality intermediate clusterings

Implementation available at https://dtai.cs.kuleuven.be/software/cobra/
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Performance for increasing number of super-instances
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