

Equivalence in CHR Tools for Proofs

Frank Raiser | August 2010 | CHR Summer School, Belgium

Table of Contents

[Equivalence of CHR States](#page-2-0)

[Motivation](#page-2-0) [Axiomatic Definition](#page-12-0) [Decision Criterion](#page-15-0)

[Operational Semantics of CHR](#page-19-0)

[Motivation](#page-19-0) [Equivalence-based Operational Semantics](#page-22-0)

[Merging CHR States](#page-28-0)

[Motivation](#page-28-0) [Merge Operator](#page-29-0) [State Splitting](#page-32-0)

Equivalence of CHR States – Motivation

Important question: Given two states, are they equivalent?

Equivalence of CHR States – Motivation

Important question:

 \blacktriangleright ...

Given two states, are they equivalent?

Why is this question important?

 \triangleright CHR is non-deterministic: when applying different rules to a state, we would like to know if resulting states are equivalent \rightsquigarrow confluence

- Input same state into different programs, we would like to check if the resulting states are equivalent
	- $\blacktriangleright \leadsto$ Program equivalence
	- Common in proofs involving source-to-source transformations

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv^? \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \equiv^? \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv^? \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv^? \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv^? \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv^? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \equiv^? \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv^? \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv^? \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv^? \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv^? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \not\equiv \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv? \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv? \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv? \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \not\equiv \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv^? \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv^? \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv^? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \not\equiv \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv^? \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv^? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv^? \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

Definition (State)

A *state* is a tuple of the form $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle$ with \mathbb{G} a multiset of CHR constraints, $\mathbb B$ a conjunction of built-ins, and $\mathbb V$ the set of global variables.

$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(X); \top; \{X\} \rangle
$$

\n
$$
\langle c(X); \top; \{X\} \rangle \equiv \langle c(Y); \top; \{Y\} \rangle
$$

\n
$$
\langle c(X); \top; \emptyset \rangle \equiv \langle c(Y); \top; \emptyset \rangle
$$

\n
$$
\langle c(X); X = 0; \{X\} \rangle \equiv \langle c(0); X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X \ge 0 \land X \le 0; \{X\} \rangle \equiv \langle \emptyset; X = 0; \{X\} \rangle
$$

\n
$$
\langle \emptyset; X = 1 \land X = 2; \{X\} \rangle \equiv \langle \emptyset; Y = 1 \land Y = 2; \{Y\} \rangle
$$

An Axiomatic Definition

or: what does it mean to be the "same"?

Definition (State Equivalence)

Equivalence between CHR states is the smallest equivalence relation \equiv over CHR states satisfying:

- 1. *(Substitution)* $\langle \mathbb{G}; X \doteq t \wedge \mathbb{B}; \mathbb{V} \rangle \equiv \langle \mathbb{G}[X/t] ; X \doteq t \wedge \mathbb{B}; \mathbb{V} \rangle$
- 2. *(Built-ins Equivalence)* If $\mathcal{CT} \models \exists \bar{s} \mathbb{B} \leftrightarrow \exists \bar{s}' \mathbb{B}'$ where \bar{s} , \bar{s}' are the strictly local variables of \mathbb{B}, \mathbb{B}' , respectively, then $\langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle \equiv \langle \mathbb{G}; \mathbb{B}'; \mathbb{V} \rangle$
- 3. *(Non-Occurring Globals)* If *X* is a variable that does not occur in G or B then $\langle G; B; \{X\} \cup V \rangle \equiv \langle G; B; V \rangle$
- 4. *(Failed States)* $\langle \mathbb{G}; \bot; \mathbb{V} \rangle \equiv \langle \mathbb{G}'; \bot; \mathbb{V} \rangle$

An Axiomatic Definition – Example

Example (Equivalence Proof)

 $\langle c(1), d(X); X = 2; \{X\}\rangle ≡ \langle c(Y), d(2); Y = 1 \land X = 2; \{X\}\rangle$

An Axiomatic Definition – Example

Example (Equivalence Proof)

$$
\langle c(1), d(X); X = 2; \{X\}\rangle \equiv \langle c(Y), d(2); Y = 1 \wedge X = 2; \{X\}\rangle
$$

$$
\langle c(1), d(X); X = 2; \{X\} \rangle
$$

\n
$$
\equiv^{CT} \langle c(1), d(X); Y = 1 \land X = 2; \{X\} \rangle
$$

\n
$$
\equiv^{Sub} \langle c(Y), d(X); Y = 1 \land X = 2; \{X\} \rangle
$$

\n
$$
\equiv^{Sub} \langle c(Y), d(2); Y = 1 \land X = 2; \{X\} \rangle
$$

Decision Criterion

or: how to tell if two states differ?

Theorem (Criterion for \equiv)

Let $\sigma = \langle \mathbb{G}; \mathbb{B}; \mathbb{V} \rangle, \sigma' = \langle \mathbb{G}'; \mathbb{B}'; \mathbb{V} \rangle$ be CHR states with local variables \bar{y} , \bar{y}' that have been renamed apart.

$$
\sigma\equiv\sigma'
$$

if and only if

$$
\mathcal{CT} \models \begin{array}{c} \forall (\mathbb{B} \rightarrow \exists \bar{y}'.((\mathbb{G} = \mathbb{G}') \wedge \mathbb{B}')) \\ \wedge \\ \forall (\mathbb{B}' \rightarrow \exists \bar{y}.((\mathbb{G} = \mathbb{G}') \wedge \mathbb{B})) \end{array}
$$

^I Simplifies negative proofs and allows automatic proof

Decision Criterion – Example

Example (Non-Equivalence Proof)

$$
\langle c(X); X=1; \{X\} \rangle \not\equiv \langle c(2); \top; \{X\} \rangle
$$

Decision Criterion – Example

Example (Non-Equivalence Proof)

$$
\langle c(X); X=1; \{X\} \rangle \not\equiv \langle c(2); \top; \{X\} \rangle
$$

- \triangleright No local variables
- $\triangleright \forall X.(X = 1 \rightarrow ((c(X) = c(2)) \land \top)$
- \triangleright Simplified: $\forall X.X = 1 \rightarrow X = 2$
- \blacktriangleright Clearly: $\mathcal{CT} \not\models \forall X.X = 1 \rightarrow X = 2$

Summary: State Equivalence

Take Home Messages

- \triangleright Axiomatic Definition of State Equivalence
- Decidable Criterion available
- \blacktriangleright Implementation available for automation

Operational Semantics – Motivation

Within a proof one may have to show that a rule application leads from one state to another. This should be quick and easy, right?

Operational Semantics – Motivation

Within a proof one may have to show that a rule application leads from one state to another. This should be quick and easy, right?

Example (Derivation Proof)

$$
\gcd(N)\backslash \gcd(M)\Leftrightarrow M\geq N\wedge N>0\mid \gcd(L), L=M\%N
$$

Given the above rule, prove that it allows rewriting gcd(6) and $gcd(3)$ into $gcd(3)$ and $gcd(0)$.

Operational Semantics – Motivation

A formal proof is complicated and lengthy

Using the theoretical operational semantics ω_t :

this includes proving that:

 $CT \models \exists N$, *M*.(gcd(6) = gcd(*M*) \land gcd(3) = gcd(*N*) \land *M* $> N \land N > 0$) $CT \models \forall ((\text{gcd}(6) = \text{gcd}(M) \land \text{gcd}(3) = \text{gcd}(N) \land M > N \land N > 0 \land L = M \# N) \leftrightarrow L = 0)$

Equivalence-based Operational Semantics or: how to make things simple

Definition (Equivalence-based Operational Semantics)

$$
r \circledast H_1 \backslash H_2 \Leftrightarrow G \mid B_c, B_b
$$

\n
$$
\langle H_1 \uplus H_2 \uplus \mathbb{G}; G \wedge \mathbb{B}; \mathbb{V} \rangle \rightarrow^r \langle H_1 \uplus B_c \uplus \mathbb{G}; G \wedge B_b \wedge \mathbb{B}; \mathbb{V} \rangle
$$

\n
$$
\sigma' \equiv \sigma \qquad \sigma \rightarrow^r \tau \qquad \tau \equiv \tau'
$$

\n
$$
\sigma' \rightarrow^r \tau'
$$

 \triangleright Supports simplification, propagation, and simpagation rules (via $H_1 = \emptyset$ and $H_2 = \emptyset$)

Equivalence-based Operational Semantics

Advantages

- Every inference rule corresponds to a CHR rule application
- \triangleright No additional conditions need to be proven
- Equivalent states are exchangeable anytime during derivation
	- \blacktriangleright Built-in store can be simplified anytime
	- \blacktriangleright In proofs we are free to select the most suitable state from all equivalent states for each derivation step
- Compatible with abstract operational semantics of CHR

Derivation Proof

Example (gcd Derivation Revisited)

 $gcd(N) \cdot gcd(M) \Leftrightarrow M > N \wedge N > 0$ | $gcd(L), L = M\%N$

 $\langle \text{gcd}(6), \text{gcd}(3); \top; \emptyset \rangle$

- \equiv $\langle \text{gcd}(M), \text{gcd}(N); M \geq N \wedge N > 0 \wedge M = 6 \wedge N = 3; \emptyset \rangle$
- \rightarrow $\langle \text{gcd}(L), \text{gcd}(N); M \geq N \land N > 0 \land M = 6 \land N = 3 \land L = M\%N; \emptyset \rangle$
- \equiv $\langle \text{gcd}(0), \text{gcd}(3); \top; \emptyset \rangle$

More Abstract Formulation

or: how one rule captures the essence of CHR

Operational Semantics based on Equivalence Classes

r **@** $H_1 \backslash H_2$ ⇔ $G \mid B_c, B_b$

 $[\langle H_1 \uplus H_2 \uplus \mathbb{G}; G \wedge \mathbb{B}; \mathbb{V} \rangle] \rightarrowtail^r [\langle H_1 \uplus B_c \uplus \mathbb{G}; G \wedge B_b \wedge \mathbb{B}; \mathbb{V} \rangle]$

Operational Semantics based on Equivalence Classes

Advantages

- In program analysis, we have no more explicit state equivalence test
	- Instead, check that results are exactly the same (equivalence class)

In a proof, if the current state is applicable to *r* **©** $H_1 \backslash H_2$ ⇔ *G* | B_c , B_b , you know the state is

 $[\langle H_1 \uplus H_2 \uplus \mathbb{G}; G \wedge \mathbb{B}; \mathbb{V} \rangle]$

for some \mathbb{G}, \mathbb{B} , and \mathbb{V} .

Equivalent to the less abstract formulation $(= all)$ advantages from before)

Summary: Equivalence-based Operational Semantics

- \triangleright Every inference rule corresponds to a CHR rule application
- \triangleright You can "w.l.o.g." consider the most suitable state representation *at any point*

Merging and Splitting – Motivation

\triangleright Monotonicity is a big strength of CHR

- ► Given any derivation $\sigma \rightarrow^* \tau$, the same rules are applicable if you "add" additional constraints to σ .
- \blacktriangleright The added constraints then occur unchanged in the resulting state.

- Can we formalize this?
- If so, we can "subtract" (by duality) unnecessary constraints to make states simpler

Merge Operator or: how to extend a state

Definition (Merge Operator \diamond)

Let $\sigma_1 = \langle \mathbb{G}_1; \mathbb{B}_1; \mathbb{V}_1 \rangle$ and $\sigma_2 = \langle \mathbb{G}_2; \mathbb{B}_2; \mathbb{V}_2 \rangle$ such that local variables of one state are disjunct from all variables in the other state.

$$
\sigma_1 \diamond_\mathbb{V} \sigma_2 ::= \langle \mathbb{G}_1 \uplus \mathbb{G}_2 ; \mathbb{B}_1 \wedge \mathbb{B}_2 ; (\mathbb{V}_1 \cup \mathbb{V}_2) \setminus \mathbb{V} \rangle
$$

$$
[\sigma_1] \diamond_{\mathbb{V}} [\sigma_2] \mathbin{::=} [\sigma_1\diamond_{\mathbb{V}} \sigma_2].
$$

For $V = \emptyset$, we write $\sigma_1 \diamond \sigma_2$ and $[\sigma_1] \diamond [\sigma_2]$, respectively.

Merge Operator

- \blacktriangleright Equality holds in both directions: merge or split $\left[\langle \mathit{c}(X); \top; \{X\} \rangle\right] \diamond_{\{X\}} \left[\langle \emptyset; X=1; \{X\} \rangle\right] = \left[\langle \mathit{c}(X); X=1; \emptyset \rangle\right]$
- \blacktriangleright Pay attention to global variables $[\langle c(X), \top; \emptyset \rangle] \diamond [\langle \emptyset; X = 1; \emptyset \rangle] = [\langle c(X), Y = 1; \emptyset \rangle]$
- For \sim_{V} , the V variables act as a temporary bridge between the two states.

Merge Operator

Example (gcd)

$$
\text{gcd}(N)\backslash \text{gcd}(M)\Leftrightarrow M\geq N\wedge N>0\mid \text{gcd}(L), L=M\%N
$$

State splitting: remove everything not required for rule application

$$
[\langle \text{gcd}(6), \text{gcd}(3); \top; \emptyset \rangle]
$$

- \equiv $\left[\langle \gcd(M), \gcd(N); M \geq N \wedge N > 0 \wedge M = 6 \wedge N = 3; \emptyset \rangle \right]$
- $=$ $[\langle \gcd(M), \gcd(N); M \geq N \wedge N > 0; \{N, M\}\rangle]$ $\diamond_{\{\textbf{\textit{N}},\textbf{\textit{M}}\}}[\langle \emptyset;\textbf{\textit{M}}=\textbf{6}\wedge\textbf{\textit{N}}=\textbf{3};\{\textbf{\textit{N}},\textbf{\textit{M}}\}\rangle]$

Monotonicity and State Splitting

or: how to switch between larger and smaller derivations

Lemma (Monotonicity)

If $[\sigma] \rightarrowtail [\tau]$ *then* $[\sigma] \diamond_{\mathbb{V}} [\sigma'] \rightarrowtail [\tau] \diamond_{\mathbb{V}} [\sigma']$ *for all* V.

 \blacktriangleright For any given derivation, you can extend start and result state

 \blacktriangleright For any derivation, you can subtract from the start state and consider the remaining derivation

Monotonicity and State Splitting

or: how to switch between larger and smaller derivations

Lemma (State Splitting with \Diamond _V)

Let the state [σ] *be applicable to a rule* $r = (H_1 \backslash H_2 \Leftrightarrow G \mid B_c, B_b)$ *with* $\mathbb V$ *being the variables occurring in H*¹ *and H*2*. Then*

 $\exists [\delta] . [\sigma] = [\langle H_1 \uplus H_2; G; \mathbb{V} \rangle] \diamond_{\mathbb{V}} [\delta].$

 \blacktriangleright Eliminates everything from current state that is not required for rule application

- \blacktriangleright Facilitates macro-step proofs
	- \triangleright A macro-step is a terminating derivation starting from a rule state like $[\langle H_1 \uplus H_2; G; \mathbb{V} \rangle]$
	- \blacktriangleright Every finite derivation has a finite number of macro-steps (induction proofs)

State Splitting – Example

Example (gcd State Splitting (cont.))

$$
[\langle \text{gcd}(6), \text{gcd}(3); \top; \emptyset \rangle]
$$

$$
= [\langle \gcd(M), \gcd(N); M \geq N \wedge N > 0; \{N, M\} \rangle] \\ \diamond_{\{N, M\}} [\langle \emptyset; M = 6 \wedge N = 3; \{N, M\} \rangle]
$$

$$
\rightarrow [\langle \text{gcd}(N), \text{gcd}(L); M \geq N \wedge N > 0 \wedge L = M\%N; \{N, M\}\rangle] \\ \diamond_{\{N, M\}} [\langle \emptyset; M = 6 \wedge N = 3; \{N, M\}\rangle]
$$

$$
= [\langle \text{gcd}(N), \text{gcd}(L); M \geq N \wedge N > 0 \wedge L = M\%N \wedge M = 6 \wedge N = 3; \emptyset \rangle]
$$

$$
= [\langle \gcd(3), \gcd(0); \top; \emptyset \rangle]
$$

State Splitting in Semantics

Apply: minimal description of requirements and consequences of rule application

Extend: arbitrary extensions possible (for any V)

Algebraic Properties of

or: how to make further use of \circ

Lemma

 $(\Sigma/\equiv, \diamond)$ *is a commutative monoid (for* $\mathbb{V} = \emptyset$).

Commutative monoid:

- \triangleright Totality \triangleright Commutativity
- \triangleright Associativity I dentity element
- \triangleright commutative monoid implies algebraic preordering
	- \triangleright $[\sigma] \triangleleft [\tau]$ if $\exists [\delta] . [\tau] = [\sigma] \diamond [\delta]$
	- in fact, \lhd is a partial order (antisymmetric)

Summary: Merging and Splitting

Take Home Messages

- \blacktriangleright Merge operator \diamond formalizes monotonicity
- State splitting extracts state components not required for rule application

Overall Summary: Presented Tools

Take Home Messages

- \triangleright State equivalence
	- \triangleright Axiomatic definition, decidable criterion, implementation available

- \blacktriangleright Equivalence-based op.sem.
- Rewriting of equivalence classes
- \triangleright Merge Operator
	- \blacktriangleright Formalizes monotonicity

Available Literature

- Frank Raiser, Hariolf Betz, Thom Frühwirth, *Equivalence of CHR States Revisited*, CHR 2009
	- axiomatic state equivalence, decidable criterion, new formulations of operational semantics
- ► Hariolf Betz, Frank Raiser, Thom Frühwirth, A Complete *and Terminating Execution Model for Constraint Handling Rules*, ICLP 2010
	- extension for propagation rules based on persistent constraints
	- \blacktriangleright full version available as technical report 1/2010 at Ulm University
- ► Frank Raiser, *Graph Transformation Systems in Constraint Handling Rules: Improved Methods for Program Analysis*, PhD thesis, Ulm University
	- \triangleright available soon (hopefully)
	- \triangleright covers everything in this talk

(all images used in this presentation are available under LGPL from Wikimedia Commons)