
CHR Summer School – September 2010

Abduction and language
processing with CHR

Henning Christiansen, professor of Computer Science at Roskilde University, Denmark

My background

! PhD in Computer Science: syntax and semantics of programming languages, 1988

! Later interest in logic programming, as specification+implementation language and an object
of study by itself

! Leading to NLP (natural language processing) and automated reasoning, in particular with
Constraint Handling Rules

! with applications in teaching, from hardcore CS students to linguists

! Recent interests include also

! probabilistic-logic models for bioinformatics

! formal linguistics, in particular language evolution

! Various: Organizer of several conferences and workshops, coordinator for international
student exchanges (Erasmus), a past as Head of CS Section and Study Director

2

Our principles

! Constraint store as a knowledge base

! CHR rules as “business logic” or “integrity constraints” ! rules about
knowledge

! Prolog or additional CHR rules as “driver algorithm”

A motivating example . . .

3

A motivation example (1:3)

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Consider the following Prolog program:

What is it supposed to mean?

Let’s try it:

| ?- happy(henning).
! Existence error in user:rich/1
! procedure user:rich/1 does not exist
! goal: user:rich(henning)

Another way of saying no :(

The problem: Prolog’s closed world assumption

4

A motivation example (2:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Let’s try with a little help from CHR:

Intuition: Make certain predicates “open world”.

| ?- happy(henning).
rich(henning) ? ;
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Looks more like it, but still not perfect . . .

5

A motivation example (3:3)

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

professor(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

Adding a bit of “universal knowledge” in terms of a CHR rule:

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

Let’s try it:

Thus:

• CHR constraints represent concrete facts about a given world.

• CHR rules represent universal knowledge valid in any world.
6

Historical background

! 1998: I found out that CHR existed and used it to implement a powerful automatic reasoning
system [Christiansen, 1998]

! 1999: Visiting LMU, Munich, 1999, cooperating with Slim Abdennadher on CHRV for
abduction [Abdennadher, Christiansen, 2000]

! Around 2000: developing CHR Grammars [Christiansen, TPLP 2005]

! 2002: Visiting Verónica Dahl in Canada; replacing CHRV by Prolog+CHR for abductive
reasoning ! Hyprolog, [Christiansen, Dahl, ICLP 2005]

! 2002 and onwards: different applications

! Since 2005 or before: applied the principle in teaching AI

! 2006-2008: Probabilistic abduction [Christiansen, 2008]

See these and other references in the reference list.
7

Overview of this course

! Abductive Reasoning with CHR

! Definition, implementation in CHR, applications, esp. for diagnosis

! Language Analysis 1: With DCGs (= Prolog) plus CHR

! Language Analysis 2: CHR Grammars

! Probabilistic Abductive Reasoning with CHR

! Each branch of computation represented as a CHR constraint

! Allows for best-first computations
8

A few remarks before we start

! All example programs available on the website (TBA)

! Tested in SICStus 4; should be compatible with SWI

! No theorems (find them in the references), just programming :)

! Please feel free to ask questions, to disagree even.

9

Part I

Abductive reasoning
with CHR

10

Abduction????

A term due to C.S.Pierce (1839-1914); the trilogy:

! Deduction

! Reason “forward” in a sound way from what we know already; finding its logic
consequences; i.e., nothing really new

! Induction

! Creating rules from example, so we can use these rules in new situations

! Abduction

! Figure out which currently unknown facts that can explain an observation; unsound
from logical point of view ;-)

11

Abduction with CHR

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.
prof(X), rich(X) ==> fail.
happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

You’ve seen it already!

| ?- happy(henning), professor(henning).
professor(henning),
has(henning,nice_students) ? ;
no

In logic programming terms:

Figure out which facts should be added to the program to make a the
given goal succeed

12

Traditional definition of Abductive
Logic Programming (ALP)

! An abductive logic program consist of

! A number of predicates, some of which are called abducibles, Abd

! A usual logic program, P, in which abducibles do not occur in the head of rules

! A set of integrity constraints, IC, which are formulas that must always be true

! An abductive answer to a query Q is a set of abducible atoms Ans such
that

! P U Ans |= Q and P U Ans |= IC

! (It is also possible to include an answer substitution, but we ignore that)

13

Translating ALP into Prolog+CHR

Abducible predicates CHR constraints

Integrity constraints CHR rules

Let us inspect our sample program:

:- use_module(library(chr)).
:- chr_constraint rich/1, professor/1, has/2.

prof(X), rich(X) ==> fail.

happy(X):- rich(X).
happy(X):- professor(X), has(X,nice_students).

14

Compare with “traditional” ALP

! Usually defined by difficult algorithms and implemented with
complicated meta-interpreters; see references to work by Kowalski,
Kakas & al, Decker, ...

! Our approach employs existing technology

! in the most efficient way

! with no meta-level overhead

! and we can use all of Prolog and CHR (libraries, all sorts of dirty tricks)

! To my knowledge, far the most efficient implementation of ALP

! The cost? Only very limited use of negation (you can read about that)
15

Applications of abduction

! Language interpretation

! Diagnosis

! Planning

! View update in databases

Separate

topic;

Not

considered;

16

Diagnosis in Prolog+CHR

! Consider a complex system

! we can only see it from the outside, i.e., observe symptoms

! we have a model about how the system works inside

! we have an idea of possible diagnoses, that can explain the symptoms

! Examples: a patient, a computer system, a car, . . .

! The problem: Given observed symptoms, suggest diagnoses

!Our example: Fault finding in logical circuits

17

A model of logical circuits in Prolog

B

A

Carry

Sum

B

A Sum

Carry in

Carry out

halfadder(A, B, Carry, Sum):-
 and(A, B, Carry),
 xor(A, B, Sum).

fulladder(Carryin, A, B,
 Carryout, Sum):-
 xor(A, B, X),
 and(A, B, Y),
 and(X, Carryin, Z),
 xor(Carryin, X, Sum),
 or(Y, Z, Carryout).

not(0, 1).
not(1, 0).

and(0, 0, 0).
and(0, 1, 0).
and(1, 0, 0).
and(1, 1, 1).

xor(0, 0, 0).
xor(0, 1, 1).
xor(1, 0, 1).
xor(1, 1, 0).

or(0, 0, 0).
or(0, 1, 1).
or(1, 0, 1).
or(1, 1, 1).

18

Adapt for diagnosis with CHR

Each logical gate is given an identifier, so we can distinguish:

fulladder(Carryin, A, B,
 Carryout, Sum):-
 xor(A, B, X, g1),
 and(A, B, Y, g2),
 and(X, Carryin, Z, g3),
 xor(Carryin, X, Sum, g4),
 or(Y, Z, Carryout, g5).

A gate may be perfect or defect (ok or ko) for specific inputs

and(A,B,X,Id):-
 and(A,B,X),
 state(Id,A+B,ok).

and(A,B,X,Id):-
 and(A,B,Z), disturb(Z,X),
 state(Id,A+B,ko).

or(A,B,X,Id):- . . .

disturb(0,1).
disturb(1,0).

:- chr_constraint state/3.

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-

produced-in-correct-

way

20

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-

produced-in-correct-

way

21

%% No CHR rules needed

| ?- fulladder(1,1,1,0,0)
state(g5,1+0,ko),
state(g4,1+0,ko),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ok),
state(g4,1+1,ok),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:

| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1),
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

....

A total of 262144 solutions

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-

produced-in-correct-

way

22

state(Id,Input,S1) \ state(Id,Input,S2) <=> S1=S2.

| ?- fulladder(1,1,1,1,1).
state(g5,1+0,ok),
state(g4,1+0,ok),
state(g3,0+1,ok),
state(g2,1+1,ok),
state(g1,1+1,ok) ? ;
....
state(g5,0+0,ko),
state(g4,1+1,ko),
state(g3,1+1,ko),
state(g2,1+1,ko),
state(g1,1+1,ko) ? ;

A total of 8 solutions

Let’s try it:

| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1),
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

....

A total of 72 solutions

Diagnosis may be based on
different assumptions

1. Periodic faults, i.e.,
sometimes a gate
works and sometimes
it doesn’t

2. Consistent faults, i.e.,
if something is wrong,
it is always wrong

3. Consistent faults with
correct-behavior-

produced-in-correct-

way

23

state(Id,A,S1) \ state(Id,A,S2) <=> S1=S2.

Let’s try it:

| ?- fulladder(0,1,1,1,0),
 fulladder(0,1,0,0,1),
 fulladder(0,0,1,0,1), !,
 fulladder(1,0,1,1,1),
 fulladder(1,1,1,0,0),
 fulladder(0,0,0,0,1).

state(g1,0+0,ko),
state(g3,0+1,ko),
state(g4,1+0,ko),
state(g4,1+1,ko),
state(g5,1+1,ko), (rest is ok) ?

Only 1 solution!!

Diagnosis may be based on
different assumptions: Summary

! Formulated in CHR with constraints for ok/not-ok for components

! Three alternative assumptions

1. periodic faults

2. consistent faults

3. consistent faults with correct-behaviour-produced-in-correct way

! In practice, try 3, if it does not work, try 2 – and if that gives too many
solutions, try to obtain more observations (i.e., test the device...)

! Problem for practical applications, say medical diagnosis, is the lack
of priority between different diagnoses

24

Planning as Abduction

! Problem: Given a number of tasks + restrictions on the order in which
they can be done.

! Solution: An assignment of a time point to each task so the
restrictions are obeyed.

! In our terms

! Abducibles (CHR constraints): Assignment of a time point to a task

! Integrity constraints (CHR rules): The restrictions

! The goal (! desired observation): “The work has been done.”

25

Planning as Abduction, example

26
soil

f0

f1

c1 c2

gable

Architect’s drawing: CHR rules:

mount(P0,Time0), mount(P1,Time1) ==>
 supports(P0,P1), Time0 > Time1
 | fail.

mount(P,Time0), mount(P,Time1) ==>
 Time0 \= Time1
 | fail.

Prolog facts:

part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog: next slide

27

CHR rules:

mount(P0,Time0), mount(P1,Time1) ==>
 supports(P0,P1), Time0 > Time1
 | fail.

mount(P,Time0), mount(P,Time1) ==>
 Time0 \= Time1
 | fail.

Prolog facts:

part(gable).
part(c1).
...
supports(soil,f0).
supports(f0,f1).

Driver algorithm in Prolog:

built:- mount(soil,0), build(1).

build(6):- !.

build(Time):-
 part(P),
 mount(P,Time),
 Time1 is Time+1,
 build(Time1).

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

Wanna see an animation

of the first solution?

28

| ?- build.
mount(gable,5),
mount(c2,4),
mount(c1,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

mount(gable,5),
mount(c1,4),
mount(c2,3),
mount(f1,2),
mount(f0,1),
mount(soil,0) ? ;

no

soil

f0

f1

c1 c2

gable

More on planning

! With the same technique, we can extend with

! Duration, e.g., it takes 8 hours to mount a column

! Resources, e.g., to mount a column, we need 1 crane and 12 workers

! Restrictions+= At any time, the resources in use must not exceed the
maximum available (say, 2 cranes and 30 workers)

! Your exercise (voluntary!): Extend the example and implement the
scheme above

! Your next exercise (difficult & voluntary): Extend your program so it tries
to find a solution that minimizes the no. of unoccupied workers — or,
alternatively, the solution that finishes the building as early as possible.

29

End of Part I

Abductive reasoning
with CHR

30

Part II

Language analysis
with Prolog and CHR

31

Overall principles

! My favourite metaphor: “Interpretation as abduction”

! Jerry R. Hobbs, Mark E. Stickel, Douglas E. Appelt, Paul A. Martin: Interpretation as
Abduction. Artif. Intell. 63(1-2): 69-142 (1993)

! Also Charniac, McDermott (1985), Gabbay & al (1997), Christiansen (2003)

! We use Prolog’s Definite Clause Grammars (DCGs) extended with
CHR

! Resulting method:

! Integrates semantic and pragmatic analysis (in contrast to tradition methods)

! A great experimental tool for students and researcher in linguistics; easy to approach
and “advanced” analyses can be specified in very short time.

32

A short historical note

! Basic idea comes from CHR Grammars (Christiansen, 2001-2005), that
we will look at later in the course

! Idea of using DCGs emerged through joint work with Verónica Dahl,
2002 and onwards....

! Lead to the Hyprolog system (Christiansen, Dahl, ICLP, 2005)

! adds a thing layer of syntactic sugar upon Prolog+CHR that supports abduction

! and so-called assumptions, which another kind of tool (related to abduction,
though), coming from Verónica Dahl’s earlier work.

! Here we show things expressed directly in Prolog(DCG)+CHR

33

Overview

! Recall Definite Clause Grammars

! Adding semantics/pragmatics: Using CHR as knowledge base as we
have seen already

! Examples

! Hyprolog and Assumptions

! Basic idea

! Examples

! Briefly about implementation techniques

! A realistic application: Mapping Use Cases to UML (sketch)

34

Definite Clause Grammars

! Syntactic sugar on top of
Prolog

! System adds difference
lists “behind the curtain”

! In Prolog from its very
beginning

! Very popular for teaching,
prototyping, and some
realistic applications

! Easy to add features and
“constraints”

35

s --> np(N), v(N), np(_).

s --> np(N), is(N), [at], np(_).

np(N) --> n(N).

v(sing)--> [sees].
v(plur)--> [see].
is(sing)--> [is].
is(plus)--> [are].

n(sing) --> [peter].
n(sing) --> [mary].
n(sing) --> [jane].
n(sing) --> [the,chr,summer,school].
n(sing) --> [hennings,course].
n(sing) --> [vacation].

n(plur) --> n(sing), [and], n(_).

s(S0,S3):- np(S0,S1,N), v(S1,S2,N), v(S2,S3).
....
v([sees|S0],S0,sing).

Adding semantics/pragmatics

! Traditionally:

! “Semantics” = context-independent (lambda) terms

! “Pragmatics” = relating “Semantics” to context, e.g., mapping variables to
(identifiers of) “real worlds”

! The present approach blurs this distinction, which suits much better
my intuition about how humans process language

! You may see this in the examples

36

A DGC with CHR for sem/pragm

37

:- chr_constraint at/2, see/2.

story --> [] ; s, ['.'], story.

s --> np(X), [sees], np(Y),
 {see(X,Y)}.

s --> np(X), [is,at], np(E),
 {at(E,X)}.

s --> np(X), [is,on,vacation],
 {at(vacation,X)}.

np(peter) --> [peter].
np(mary) --> [mary].
np(jane) --> [jane].

np(chr_summer_school)
 --> [the,chr,summer,school].

np(hennings_course)
 --> [hennings,course].

np(vacation) --> [vacation].

First version: Only noting facts

:- phrase(story,
 [peter,sees,mary,'.',
 peter,sees,jane,'.',
 peter,is,at,the,
 chr,summer,school,'.',
 mary,is,at,hennings,course, '.',
 jane,is,on,vacation,'.']).

at(vacation,jane),
at(hennings_course,mary),
at(chr_summer_school,peter),
see(peter,jane),
see(peter,mary) ?

38

:- chr_constraint at/2, in/2, see/2, skypes/2.

at(chr_summer_school,X) ==> in(leuven,X).

in(Loc1,X) \ in(Loc2,X) <=> Loc1=Loc2.

at(hennings_course,X) ==> at(chr_summer_school,X).

at(vacation,X) ==> in(Loc,X), diff(Loc,leuven).

see(X,Y) ==> true |
 (in(L,X), in(L,Y)
 ; in(Lx,X), in(Ly,Y), diff(Lx,Ly), skypes(X,Y)).

diff(...) <=> % Homemade version of dif/1 for nicer output

% Grammar rules: Exactly the same as before

2nd version: Adding world knowledge

| ?- phrase(story, [mary,is,at,hennings,course,'.']).

at(chr_summer_school,mary),
at(hennings_course,mary),
in(leuven,mary) ?

| :- phrase(story,
 [peter,sees,mary,'.',
 peter,sees,jane,'.',
 peter,is,at,the,
 chr,summer,school,'.',
 mary,is,at,hennings,course, '.',
 jane,is,on,vacation,'.']).

at(vacation,jane),

at(chr_summer_school,mary),

at(hennings_course,mary),

at(chr_summer_school,peter),

in(_A,jane),

in(leuven,mary),

in(leuven,peter),

see(peter,jane),

see(peter,mary),

skypes(peter,jane),

diff(leuven,_A) ?

HYPROLOG and Assumptions

! Assumptions developed by [Dahl & al., 1997; Christiansen, Dahl, 2004, ...]

! Similar to abduction but with explicit creation and application + simplistic scoping

! Can be implemented in CHR more or less the same way as abduction; you may also
take this as a lesson in implementing knowledge handling with CHR

! Included in the HYPROLOG system

39

+A! Assert linear assumption A for subsequent proof steps.!

Linear means “can be used once”.!

*A! Assert intuitionistic assumption A for subsequent proof steps.!

Intuitionistic means “can be used any number of times”.!

-A! Expectation: consume/apply existing intuitionistic assumption in the state which
unifies with A. !

=+A, =*A, =-A! Timeless versions of the above, meaning that order of assertion of assumptions and
their application or consumption can be arbitrary.!

Example of Assumptions in DCG

40

Semantic-pragmatic analysis with pronoun resolution/HYPROLOG syntax

assumptions acting/1.
abducibles fact/1.

sentence --> np(A,_), verb(V), np(B,_),
 {fact(A,V,B)}.

sentences --> [] ; sentence(S1),sentences(S2).

np(X,Gender) --> name(X,Gender),
 {*acting(X,Gender)}.

name(peter,masc) --> [peter].

...

np(X,Gender) --> {-acting(X,Gender)},
 pronoun(Gender).

pronoun(fem) --> [her].

...

verb(like) --> [likes].

“Peter likes Mary. She likes him”

*acting(peter,masc)
*acting(mary,fem)
-acting(X,fem)

 leads to X=mary
-acting(X, masc)

 leads to X=peter

fact(peter,like,mary)
fact(mary, like,peter)

Implementing Assumptions
for DCGs in CHR

Example: Linear assumptions and expectations

! We want to be able to backtrack through alternative matches

! Incompatible (at first glance) with CHR’s philosophy

41

:- chr_constraint (-)/1, (+)/1, assump_list/1.

+A, assump_list(L) <=> assump_list([A|L]).

+A <=> assump_list([A]).

-E, assump_list(L) <=> member(A,L,LRest), assump_list(LRest), A=E.

This is just one way on implementing Assumptions;

it is more efficient to maintain one assump_list per Assumption symbol

What is HYPROLOG, btw.?

! A system that adds a thin layer of syntactic sugar on top of Prolog+CHR
! Special syntax for declaring abducibles (as you have seen)

! Utilities and options for abductive reasoning (not shown here)

! Assumptions implemented as you have just seen

! Implementation principles interesting if you want to do such things ...

! Using same facilities as DCGs and CHR: term_expansion

! Operator declarations in Prolog are fine and useful, but we need also:

! When reading in a term from a Prolog source file, the system checks if there is a
term_expansion clause that matches that term ...

Example, next slide

42

(A small parenthesis on Prolog
programming)

! Implementing a “where” notation in Prolog which really surprises me
that they did not put in from the beginning; included in HYPROLOG
and CHR Grammars :)

43

Instead of

p(X):- r(X,Y), z(Y,4), q(X,17).

we would like to write

p(X):- Test, q(X, LastArg)

 where Test = (r(X,Y), z(Y,4)),
 LastArg = 17.

Implementation

:- op(1200,yfx, where).

term_expansion((Rule where Replace), Result):-
 Replace -> term_expansion(Rule, Result)
 ; write('Error in "where" part'),
 abort.

(Recursive call to term_expansion important)

A realistic example: Extracting
UML diagrams from Use Cases

! Based on 4 week project work with two students [Christiansen, Have,
Tveitane, 2007 a+b]

! Only a brief sketch; here using full power of CHR without caring
about formal details ;-)

! Use cases?? In the OOA/OOP tradition, small stories about the world
which the system to be developed will fit it.

! According to OOA principles, UML diagrams describing classes and
their property, etc., are produced manually from use cases...

! But why not do it automatically, when we have a tool such as Prolog
+CHR which is perfectly suited for semantic/pragmatic analysis

44

Example of input and output

From uses cases:

! The professor teaches. A
student reads, writes
projects and takes exams.
Henning is a professor. He
has an office. The
university has five study
lines. Students and
professors are persons.

... extract info and produce

45

Examples of CHR rules for
knowledge extraction (1:2)

46

property(man, dog:1)
property(man, dog:5)

property(man, dog:(1..5))

Merging cardinalities, e.g.:

property(C,P:N), property(C,P:M) <=>
 count(N), count(M), N=<M
| property(C,P:(N..M)).

property(man, dog:(0..2))
property(man, dog:(1..n))

property(man, dog:(0..n))

property(C,P:(N1..M1)),property(C,P:(N2..M2)) <=>
 min(N1,N2,N), max(M1,M2,M),
 property(C,P:(N..M)).

(NB: “n” is a special symbol meaning “many”)

Examples of CHR rules for
knowledge extraction (2:2)

Pronoun resolution, e.g.,

Jack and John are teachers. Jack teaches music. John teaches computer science. Mary is a
student. He has many students.

Our heuristics: Take most recent referent that matches gender and when no ambiguity
arises; in case of ambiguity, we call it an error

Jack and John are teachers. He

47

sentence_no(Now), referent(No,G,Id,T) \ expect_referent(No,G,X) <=>
 T < Now, there is no other relevant referent with Timestamp > T

|

 if there is another relevant referent with Timestamp = T then
 X = errorcode(ambiguous)
 else
 X = Id.

Summary: Language analysis with
DGC+CHR

! Natural and straightforward integration of semantic/pragmatic analysis
with parsing

! 106 times easier for this purpose than any other, known tools

! DCGs (i.e., Prolog) provide parsing plus auxiliary predicates

! CHR constraint store as knowledge base; CHR rules for world knowledge

! We showed
! Direct use of DCG+Prolog

! HYPROLOG which provided syntactic sugar, Assumptions and various auxiliaries

! A realistic example with pronoun resolution and semantic reasoning

48

End of part II

Language analysis
with Prolog and CHR

49

Part III

CHR Grammars

50

CHR Grammars, background

! Around 2000, I noticed that it was easy to write bottom-op parsers with CHR

! Experiments showed that there was much more power in this principles than
expected:

! very flexible context-dependent rules, gaps, parallel matching, ...

! interesting treatment of ambiguity

! having parsing to depend on “semantics”, and a lot of other stuff

! 2002: CHR Grammar system released; only SICStus 3; beta versions for SICStus
4 and SWI exist; will be released soon (especially if you write to me ;-)

! Main publication 2005 [JLP]

! Applications: The full power of CHR Grammars still needs to be discovered
51

CHR Grammars, overview

! Bottom-up parsing with CHR, our principle

! A grammar notation and its translation into CHR

! What we can do in CHR Grammars, derived from the translation into
CHR
! We have squeezed as much power as possible out of CHR without caring whether it

is useful (our preferred design methodology ;-)

! Example: a biological application

52

Bottom-up parsing with CHR

53

Encode the string as a set of constraints with word boundaries

“Peter likes Mary”

token(0,1,peter),token(1,2,likes),token(2,3,mary).

:- chr_constraint np/2, verb/2,
 sentence/2, token/3.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary) ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

np(N0,N1), verb(N1,N2), np(N2,N3)
 ==> sentence(N0,N3).

A bottom-parser that checks word/phrase boundaries

?-
np(0,1),
verb(1,2),
np(2,3),
sentence(0,3),
token(0,1,peter),
token(1,2,likes),
token(2,3,mary) ?

A grammar notation upon CHR

54

:- chr_constraint np/2, verb/2,
 sentence/2, token/3.

token(N0,N1,peter) ==> np(N0,N1).
token(N0,N1,mary) ==> np(N0,N1).
token(N0,N1,likes) ==> verb(N0,N1).

np(N0,N1), verb(N1,N2), np(N2,N3)
 ==> sentence(N0,N3).

Why write this?

:- grammar_symbol np/0, verb/0,
 sentence/0.

[peter] ::> np.
[mary] ::> np.
[likes] ::> verb.

np, verb, np ::> sentence.

end_of_CHRG_source.

When we would like to write this:

The CHR compiler
compile-on-load using term_expansion

?- token(0,1,peter),
 token(1,2,likes),
 token(2,3,mary).

?- parse([peter,likes,mary]).

Inherent handling of ambiguity

! I.e., all possible parses are run “in parallel”
! You can limit this by, e.g., simplification rules;

! in the example, you would end up with {abc1(0,3), c(2,3)}

! Thus the semantics very procedural! (good or bad?) 55

[a] ::> a.
[b,c] ::> bc.
[a,b] ::> ab.
[c] ::> c.
a, bc ::> abc1.
ab, c ::> abc2.

token(0,1,a)

a(0,1) ab(0,2) bc(1,3) c(2,3)

abc1(0,3) abc2(0,3)

token(1,2,b) token(2,3,c)

| ? parse([a,b,c])

What else can we put in? (1:5)

! ::> translates into ==>

! <:> translates into <=>

! Order independent syntax for simpagations

!a, b, !c <:> ac.

translated into

b(N1,N2) \ a(N0,N1), c(N2,N3) <=> ac(N0,N3).

56

What else can we put in? (2:5)

Gaps in the head

[blip], 7...10, [blop] ::> blipblop

! translated into

a(N0,N1),b(N2,N3) ::>

 N2-N1 >= 7, N2-N1 =< 10

| ab(N0,N3).

! This may be relevant for biologic applications such as RNA folding

57

What else can we put in? (3:5)

Left and right context

! left-context -\ core-to-be-reduced /- right-context ::>

! For example

c1, ..., c2 -\ c3, c4 /- ..., c5 <:> c34.

! translated into

c1(_,N1), c2(N2,N3), c3(N3,N4), c4(N4,N5),
c5(N6,_)

<=> N1=<N2, N5=<N6 | c34(N3,N5).
58

What else can we put in? (4:5)

Parallel matching

! one-reading-of-the-text $$ another-reading-of-the-text ::>

! For example: a $$ b <:> c.

! translates into: a(N0,N1), a(N0,N1) <=> c(N0,N1).

! And: a, 5...12 $$ b, c <:> d

! translates into:

a(N0,N1), b(N0,N11), c(N11,N2)

<=> N1-N2 >= 5, N1-N2 =< 12 | d(N0,N2)

! Applications? I forgot why I included it, but it is smart, isn’t it?
59

What else can we put in? (5:5)

! Assumptions as we have seen

! Further equipment for abduction (see paper on CHRG)

! All sorts of utilities and options (see online User’s Guide)

! Extra-grammatical constraints in the head and body of rules (...)

60

Example: Simplification and
context for disambiguation

61

e, [+], e /- (['+'];[')'];[eof]) <:> e.

e, [*], e /- ([*];[+];[')'];[eof]) <:> e.

e, [^], e /- [X] <:> X \= ^ | e.

['('], e, [')'] <:> e.

[N] <:> integer(N) | e.

An abstract and highly ambiguous grammar:

Here we used LR(1) items as right context to disambiguate...

just one special case of what we can do

Example: Context used for
tagger-like rules

62

 name(A) /- verb(_) <:> subject(A).

verb(_) -\ name(A) <:> object(A).

name(A), [and], subject(B) <:> subject(A+B).

object(A), [and], name(B) <:> object(A+B).

Classify np’s according to position of the verb

name(martha) verb(likes) [and] name(peter) verb(hates) name(paul)

Martha likes and Peter hates Paul

subject(martha)

/-

subject(peter)

/-

object(paul)

-\

A little voluntary exercise

! Write the remaining rules for a grammar that may parse the entire phrase given in
the previous slide.

! to make certain terminal symbols into nonterminals such as name(mary)

! to make certain terminal symbols into nonterminals verb(likes)

! to parse complete sentences, i.e., that include explicit object.

! to parse incomplete sentences that has implicit object, given by another sentence after
“and”.

! Next, add at attribute to each sentence of the form fact(subject,verb,object) and
modify your grammar so that it generates the correct “meaning” for each sentence,
also the incomplete ones.

! For example, the first incomplete sentence in the previous example should generate
the “meaning” fact(martha,like,paul).

! Extend the grammar with whatever you find interesting.
63

Biological example

! RNA folding — to be developed over summer

64

Summary of CHRGs

! A powerful language specification language

! A powerful language processing system

! Exemplifies how you can use CHR to implement fairly advanced,
knowledge-based systems

! A compile-on-load implementation technique, you can use for other
purposes

! The power of CHRGs has not been explored fully; biological
applications are under consideration

65

End of part III

CHR Grammars

66

Part IV

Probabilistic abduction
with best-first search

67

Probabilistic Abduction with CHR

Our approach

! Use constraint store to hold a bunch of processes; CHR rules perform derivation steps

! Each such process holds its “own constraint store”

! This principle can be used for other purposes!!!

! Recall abduction: To figure out which facts that are missing in order to have a given goal to
succeed; integrity constraints to avoid nonsense

This presentation

! Shows the propositional case only and by example, but ...

! See [Christiansen, 2008 - LNCS 5388] for all details with variables and non-ground abducibles.
! No system available, but you can copy-paste from the paper

68

Towards probabilistic abduction:
(1:4) Processes as CHR constraints

69

This is a Prolog program:

p:- q.
p:- r.
q:- s.
q.
s.

This is its translation into an all-solutions CHR version:

:- chr_constraint process/1.

process([p|More]) <=>
 process([q|More]),
 process([r|More]).

process([q|More]) <=>
 process([s|More]),
 process(More).

process([s|More]) <=> process(More).
Trying it:

| ?- process([p]).
process([r]),
process([]),
process([]) ? ;
no

! a failed branch (i.e., could not continue)

! successful branches

Towards probabilistic abduction:
(2:4) Adding abducibles

70

This is an abductive logic

program:

abducible(a).
abducible(b).
abducible(c).
p:- a,q.
p:- r.
q:- b,s.
q:- c.
s.

This is its translation into an all-solutions CHR version:

:- chr_constraint process/2.

process([p|More],Abd) <=>
 process([a,q|More],Abd),
 process([r|More],Abd).

process([q|More],Abd) <=>
 process([b,s|More],Abd),
 process([c|More],Abd).

process([s|More],Abd) <=> process(More,Abd).

process([A|More],Abd) <=>
 abducible(A),
 |
 (member(A,Abd) -> process(More,Abd)
 ; process(More,[A|Abd])).

Trying it:

| ?- process([p],[]).
process([r],[]),
process([],[c,a]),
process([],[b,a]) ? ;
no

! a failed branch (i.e., could not continue)

! successful branches

Towards probabilistic abduction:
(3:4) Adding integrity constraints

71

This is an abductive logic

program:

abducible(a).
abducible(b).
abducible(c).
p:- as before

:- a,c.

This is its translation into an all-solutions CHR version:

:- chr_constraint process/2.

process([p|More],Abd) <=>
 as before

process([A|More],Abd) <=>
 abducible(A), \+ violate([A|Abd])
 |
 (member(A,Abd) -> process(More,Abd)
 ; process(More,[A|Abd])).

violate(Abd):- member(a,Abd), member(c,Abd).Trying it:

| ?- process([p],[]).
process([r],[]),
process([c],[a]),
process([],[b,a]) ? ;
no

! failed branches (i.e., could not continue)

! a successful branch

Towards probabilistic abduction:
(4:4) Finally, probabilities

72

This is a probabilistic

abductive logic program:

abducible(a, 0.2).
abducible(b, 0.7).
abducible(c, 0.9).
p:- as before
 ...

:- a,c.

This is its translation into an all-solutions CHR version:

:- chr_constraint process/3.

process([p|More],Abd,Prob) <=>
 process([a,q|More],Abd,Prob),
 process([r|More],Abd,Prob).
....

process([A|More],Abd,Prob) <=>
 abducible(A,P), \+ violate([A|Abd])
 |
 (member(A,Abd) -> process(More,Abd,Prob)
 ; Prob1 is Prob*P,
 process(More,[A|Abd],Prob1)).

violate(Abd):- member(a,Abd), member(c,Abd).

Trying it:

| ?- process([p],[],1).
process([r],[],1),
process([c],[a],0.2),
process([],[b,a],0.14) ? ;
no ! failed branches (i.e., could not continue)

! a successful branch

Extending with best-first search

! Add a little bit of control encoding

! only a process(G,Abd,P) with a highest P can be expanded

! when the first process([],Abd,P) is encountered, Abd and P are printed and the
user asked if he/she wants more solution

! Advantages

! more efficient: executes until first and guaranteed best solution is found

! can work even with programs that would otherwise loop

! Find details in the paper [Christiansen, 2008 - LNCS 5388]

73

Example: Diagnosis with
probabilities

74

pp n1 n2 n3

n4

v4 v5

v1 v2

v3

w1 w2 w3 w4

w5 w6 w7

w8 w9

A power supply network: abducible(up(_), 0.9).
abducible(down(_), 0.1).

:- up(X),down(X).

link(w1, pp, n1). ...

haspower(pp):- up(pp).
haspower(N2):-
 link(W,N1,N2), up(W), haspower(N1).

hasnopower(pp):- down(pp).
hasnopower(N2):- link(W,_,N2), down(W).
hasnopower(N2):-
 edge(_,N1,N2), hasnopower(N1).

Trying it:

?- haspower(v5), nohaspower(v1).
to be tested and included later

A voluntary project work

! Write a compile-on-load implementation of probabilistic logic
programs using term_expansion.

! If you decide to do this, write to me!!

75

Summary of our approach to
Probabilistic Abduction with CHR

! Probabilities (or other priorities) needed in practice

! Abductive logic programs with probabilities are powerful modeling tools for systems to be
diagnosed

! Comparison:

! To be done:
! an efficient priority queue for selecting currently best

! express and utilize that, e.g., down(X),up(X) are each other’s negation, e.g.,

[down(w1), down(w2)] + [down(w1), up(w2)] = [down(w2)]
76

Our approach Poole [1993,200]
Sato & al [2001, ...]

PRISM

Non-ground

abducibles
yes no yes

Integrity

constraints
yes no no

Other

features

Very powerful machine learning
techniques and lots of facilities

Non-ground abducibles?

| ?- happy(peter).

married(peter,X), blond(X), rich(X).
Probability = 0.2689

End of part IV

Probabilistic abduction
with best-first search

77

Summary of the course

! CHR is for more than numbers, inequalities and stuff like that

! CHR is a powerful knowledge representation & manipulation language

! I have showed methods for abductive reasoning and language processing,
that are

! executed directly by the underlying CHR and Prolog systems

! thus efficient for the right kind of problems

! I have intended that, after this course and a bit of reading, you can

! use the methods as described directly

! invent your own ways to work with knowledge and experiment with in Prolog+CHR
78

The End

