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Classical Logic I

What is Logic?
I “The study of correct reasoning, especially as it involves

the drawing of inferences.” (Encyclopaedia Britannica)
I “The anatomy of thought.” (John Locke)
I “The art of going wrong with confidence.” (Joseph Wood

Krutch)
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Classical Logic II

Logical Symbols
I Connectives: ∧ → ∨ ¬

I Consequence: |=

I Quantifiers: ∃ ∀

Examples
I rain ∧ sun→ rainbow
I |= rain ∨ ¬rain
I rain→ wet, rain |= wet
I rain→ wet, rain |= rain ∧wet
I ∀D.rain(D)→ wet(D), rain(today) |= wet(today)
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Classical Logic III

Semantical vs. Syntactical Consequence
I ϕ1, . . . , ϕn |= ψ

I semantical consequence
I model-theoretic characterization

I ϕ1, . . . , ϕn ` ψ
I syntactical consequence
I proof-theoretic characterization

Non-Classical Logics
I extensions of CL /deviations from CL
I truth value/interpretation/model?
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Linear Logic I

(Multiplicative) Conjunction)
CL LL
A,B |= A ∧ B A,B ` A ⊗ B
A,A |= A ∧ A A,A ` A ⊗ A

A ≡ A ∧ A
{

A ` A ∧ A
A ∧ A ` A A . A ⊗ A

{
A 0 A ⊗ A
A ⊗ A 0 A

set semantics multi-set semantics
truths resources

Example
I rain ∧ rain ≡ rain
I coffee ⊗ coffee . coffee
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Linear Logic II

(Linear) Implication
CL LL
A,A→ B |= B A,A( B ` B
A,A→ B |= A ∧ B A,A( B 0 A ⊗ B

strictly monotonic “consumes” precondition
consequence state transition

Examples
I rain→ wet, rain |= rain ∧wet
I euro→ coffee,euro ` coffee
I euro→ coffee,euro 0 euro ⊗ coffee
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Linear Logic III

(Additive) Conjunction
CL LL
A ∧ B |= A A ⊗ B 0 A A&B ` A
A ∧ B |= B A ⊗ B 0 B A&B ` B

A,B ` A ∧ B A,B ` A ⊗ B A,B 0 A&B

Examples
I coffee&pie ` coffee
I coffee&pie ` pie
I coffee&pie 0 coffee ⊗ pie
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Linear Logic IV

“Bang” exponential

CL LL
A ≡ A ∧ A A . A ⊗ A !A ≡!A⊗!A

A ⊗ B . A&B !A⊗!B ≡!(A&B)

restores set-semantics
unifies ⊗ and &

Examples
I rain→ wet, rain |= rain ∧wet
I rain( wet, rain 0 rain ⊗wet
I !(rain( wet), !rain `!rain⊗!wet
I !(euro( coffee&pie) ` euro ⊗ euro( coffee ⊗ pie
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Linear Logic V: Embedding of Classical Logic

Consequences of “bang”
I restores properties of CL
I selective recovery or full embedding

Possible Interpretation
unbanged formula resource
banged formula unlimited resource /

proposition
` state transition?

logical consequence?
⇒ aspects of both
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Linear Logic VI: First-order Linear Logic

FOLL by Example
I All pies are one euro:
I !∀P.!is pie(P)( (euro( pie(P))

I Some pies are one euro:
I !∃P.!is pie(P) ⊗ (euro( pie(P))
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Translation of States

Translation of States by Example

〈a,a;>; ∅〉L ::= a ⊗ a
〈c(X ); X > 0; {X }〉L ::= c(X )⊗!(X > 0)

〈c(X ); Y > 0; {X }〉L ::= ∃Y .c(X )⊗!(Y > 0)

Translation of States
user-defined constraints unbanged atoms
built-in constraints banged atoms
global variables free variables
local variables ex. quantified variables
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Translation of Rules

Translation of Rules by Example

a⇔ b 〈a;>; ∅〉 7→ 〈b;>; ∅〉
!(a( b) ` a( b

a(X )⇔ b(X ) 〈a(0);>; ∅〉 7→ 〈b(0);>; ∅〉
!∀(a(X )( b(X )) ` a(0)( b(0)

a(X )⇔ X ≥ 0 | b(X ) 〈a(0);>; ∅〉 7→ 〈b(0);>; ∅〉
!∀(!(X ≥ 0)( (a(X )( b(X ))) ` a(0)( b(0)

a⇒ b 〈a;>; ∅〉 7→ 〈a,b;>; ∅〉
!(a( a ⊗ b) ` a( a ⊗ b
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Soundness and Completeness of Linear Logic Semantics

Soundness

P,CT : S 7→∗ T ⇒ PL,CT L ` SL ( T L

No Completeness?

PL,CT L ` SL ( T L ; P,CT : S 7→∗ T
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Implicit Weakening in the Completeness Result

Example: Implicit Weakening
Let P = {a(X )⇔ b(X )}.

P,CT : 〈a(0);>; ∅〉 7→ 〈b(0);>; ∅〉 (1)

PL,CT L ` a(0)( b(0) (2)
` b(0)( ∃X .b(X ) (3)

PL,CT L ` a(0)( ∃X .b(X ) (4)
P,CT : 〈a(0);>; ∅〉 67→ 〈b(X );>; ∅〉 (5)

Theorem (Completeness)

If PL,CT L ` SL ( T L then
P,CT : S 7→∗P U and CT L ` UL ( T L.



Page 15 Linear-Logic Based Analysis of CHR | Hariolf Betz | September 2010

Linear Logic and State Equivalence

Implicit State Equivalence

` 〈u(0);>; {X }〉L � 〈u(0);>; ∅〉L

CT L ` 〈u(X); X = 0; {X }〉L � 〈u(0); X = 0; {X }〉L

CT L ` 〈U;⊥;V〉L � 〈U′;⊥;V′〉L

Equivalence of States (Preliminary Definition)

S ≡ T ⇔ CT L ` SL � T L
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Axiomatic Definition of Equivalence

State Equivalence
Let state equivalence be the smallest equivalence
relation ≡e over states such that:

1. 〈U; X = t ∧ B;V〉 ≡e 〈U [X/t ] ; X = t ∧ B;V〉

2. Let s̄i = vars(Bi) \ vars(U,V). If CT |= ∃s̄1.B1 ↔ ∃s̄2.B2
then

〈U;B1;V〉 ≡e 〈U;B2;V〉

3. For X < vars(U,B), 〈U;B; {X } ∪ V〉 ≡e 〈U;B;V〉

4. 〈U;⊥;V〉 ≡e 〈U
′;⊥;V′〉
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Coincidence of Equivalence Definitions

Theorem (Coincidence of Definitions)
The axiomatic definition of state equivalence coincides with
implicit state equivalence:

S ≡e T ⇔ CT L ` SL � T L
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Safety Properties

Safety Properties
Any property of the form P,CT : S 67→ T is called a safety
property.

Sufficient Criterion for Safety Properties

PL,CT L 0 SL ( T L ⇒ P,CT : S 67→∗ T
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Operational Equivalence

Definition (Operational S-Equivalence)
Two CHR programs P1,P2 are operationally S-equivalent if
for any two states S and 〈∅;B;V〉, we have:

P1,CT : S 7→∗ 〈∅;B;V〉 ⇔ P2,CT : S 7→∗ 〈∅;B;V〉
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Sufficient Criterion for Operational S-Equivalence

Definition: Confluence

A CHR program P is confluent if for all states S,T ,T ′ such
that S 7→∗ T and S 7→∗ T ′, there exists a state T ′′ such that
T 7→∗ T ′′ and T ′ 7→∗ T ′′.

Logical equivalence is sufficient for S-equivalence:

Theorem: S-Equivalence
Let P1,P2 be confluent CHR programs such that:

CT L ` PL
1 � PL

2

Then P1,P2 are S-equivalent.
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Outlook

Further Applications
I Extension to CHR with search (CHR∨)

I Embedding LP programs
I Deciding operational equivalence across language

paradigms
I Novel ways to deal with propagation

I Trivial non-termination in naive semantics
I Inspired by “bang” exponential:
I Finite representation of infinite states
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Summary
I Linear Logic . . .

I . . . deals with resources and truths
I . . . is non-monotonic
I . . . embeds classical logic

I CHR . . .
I . . . corresponds to a subset of linear logic
I . . . can be analysed using linear logic

I Applications include . . .
I . . . motivation and justification for state equivalence
I . . . checking safety properties
I . . . deciding operational equivalence
I . . . even across language paradigms
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