

Linear-Logic Based Analysis of Constraint Handling Rules

Hariolf Betz | September 2010 | CHR Summer School 2010

Classical Logic I

What is Logic?

- \triangleright "The study of correct reasoning, especially as it involves the drawing of inferences." (Encyclopaedia Britannica)
- \blacktriangleright "The anatomy of thought." (John Locke)
- \triangleright "The art of going wrong with confidence." (Joseph Wood Krutch)

Classical Logic II

Logical Symbols

- ^I Connectives: ∧ → ∨ ¬
- \triangleright Consequence: \models
- ^I Quantifiers: ∃ ∀

- ^I **rain** ∧ **sun** → **rainbow**
- ^I |= **rain** ∨ ¬**rain**
- \triangleright **rain** \rightarrow **wet**, **rain** \models **wet**
- ^I **rain** [→] **wet**,**rain** [|]⁼ **rain** [∧] **wet**
- ^I [∀]**D**.**rain**(**D**) [→] **wet**(**D**),**rain**(**today**) [|]⁼ **wet**(**today**)

Classical Logic III

Semantical vs. Syntactical Consequence

- $\varphi_1, \ldots, \varphi_n \models \psi$
	- \triangleright semantical consequence
	- \triangleright model-theoretic characterization

$$
\;\blacktriangleright\; \varphi_1,\ldots,\varphi_n\vdash \psi
$$

- $\varphi_1, \ldots, \varphi_n \vdash \psi$
> syntactical consequence
	- proof-theoretic characterization

Non-Classical Logics

- ^I *extensions* of CL /*deviations* from CL
- \triangleright truth value/interpretation/model?

Linear Logic I

(Multiplicative) Conjunction)

CL
\n
$$
A, B \models A \land B
$$

\n $A, A \models A \land A$
\n $A \equiv A \land A$
\n $A \equiv A \land A$
\n $A \equiv A \land A$
\n $A \land A \land A$
\n $A \neq A \otimes A$
\n $A \neq A \otimes A$

A, *B* ⊢ *A* ⊗ *B*
A, *A* ⊢ *A* ⊗ *A* $A \neq A \otimes A$ $\begin{cases} A \times A \otimes A \\ A \otimes A \end{cases}$ *A* ⊗ *A* 0 *A*

truths resources

set semantics multi-set semantics

- ^I **rain** ∧ **rain** ≡ **rain**
- ^I **coffee** ⊗ **coffee** . **coffee**

Linear Logic II

(Linear) Implication

 $A, A \rightarrow B \vdash B$ $A, A \multimap B \times A \otimes B$

consequence state transition

strictly monotonic "consumes" precondition

- ^I **rain** [→] **wet**,**rain** [|]⁼ **rain** [∧] **wet**
- \blacktriangleright **euro** \rightarrow **coffee**, **euro** \vdash **coffee**
- ^I **euro** [→] **coffee**, **euro** ⁰ **euro** [⊗] **coffee**

Linear Logic III

- ^I **coffee**&**pie** ` **coffee**
- ^I **coffee**&**pie** ` **pie**
- ^I **coffee**&**pie** 0 **coffee** ⊗ **pie**

Linear Logic IV

"Bang" exponential

A ≡ *A* ∧ *A A* . *A* ⊗ *A* !*A* ≡!*A*⊗!*A A* ⊗ *B* . *A*&*B* !*A*⊗!*B* ≡!(*A*&*B*)

restores set-semantics unifies ⊗ and &

- ^I **rain** [→] **wet**,**rain** [|]⁼ **rain** [∧] **wet**
- ^I **rain** (**wet**,**rain** ⁰ **rain** [⊗] **wet**
- ^I !(**rain** (**wet**), !**rain** `!**rain**⊗!**wet**
- ^I !(**euro** (**coffee**&**pie**) ` **euro** ⊗ **euro** (**coffee** ⊗ **pie**

Linear Logic V: Embedding of Classical Logic

Consequences of "bang"

- \triangleright restores properties of CL
- \triangleright selective recovery or full embedding

Possible Interpretation

unbanged formula resource

banged formula unlimited resource / proposition $\overline{ }$ state transition? logical consequence? ⇒ **aspects of both**

Linear Logic VI: First-order Linear Logic

FOLL by Example

- \blacktriangleright All pies are one euro:
- \triangleright !∀*P*.!**is_pie** $(P) \multimap$ (euro \multimap pie (P))
- \triangleright Some pies are one euro:
- \blacktriangleright !∃*P*.!**is_pie** $(P) \otimes$ (euro \multimap pie (P))

Translation of States

Translation of States by Example

Translation of States

user-defined constraints unbanged atoms built-in constraints banged atoms global variables free variables

local variables ex. quantified variables

Translation of Rules

Translation of Rules by Example

$$
\begin{array}{l} \mathbf{a} \Leftrightarrow \mathbf{b} \\ \qquad \qquad \langle \mathbf{a}; \top; \emptyset \rangle \mapsto \langle \mathbf{b}; \top; \emptyset \rangle \\ \qquad \qquad \langle \mathbf{a} \neg \circ \mathbf{b} \rangle \end{array}
$$

$$
\mathbf{a}(X) \Leftrightarrow \mathbf{b}(X) \qquad \langle \mathbf{a}(0); \top; \emptyset \rangle \mapsto \langle \mathbf{b}(0); \top; \emptyset \rangle
$$

$$
! \forall (\mathbf{a}(X) \multimap \mathbf{b}(X)) \vdash \mathbf{a}(0) \multimap \mathbf{b}(0)
$$

a(*X*) \Leftrightarrow *X* \ge 0 | **b**(*X*) \iff \langle **a**(0); \top ; Ø $\rangle \mapsto$ \langle **b**(0); \top ; Ø \rangle $\Pi \forall (\Pi(X \geq 0) \multimap (a(X) \multimap b(X))) \vdash a(0) \multimap b(0)$

a ⇒ b $\langle a; \top; \emptyset \rangle \mapsto \langle a, b; \top; \emptyset \rangle$
!(**a** ⊸ **a** ⊗ **b**) ⊦ **a** ⊸ **a** ⊗ **b**

Soundness and Completeness of Linear Logic Semantics

Soundness

\n
$$
P, CT: S \mapsto^* T \quad \Rightarrow \quad P^L, CT^L \mapsto S^L \multimap T^L
$$
\nNo Completeness?

\n
$$
P^L, CT^L \mapsto S^L \multimap T^L \quad \Rightarrow \quad P, CT: S \mapsto^* T
$$

Implicit Weakening in the Completeness Result

Example: Implicit Weakening

Let $P = \{a(X) \Leftrightarrow b(X)\}.$

$$
P, C\mathcal{T}: \langle a(0); \top; \emptyset \rangle \mapsto \langle b(0); \top; \emptyset \rangle \tag{1}
$$

$$
P^{\perp}, C\mathcal{T}^{\perp} \vdash a(0) \multimap b(0) \tag{2}
$$

$$
+ b(0) \rightarrow \exists X.b(X) \tag{3}
$$

$$
P^{\perp}, C\mathcal{T}^{\perp} \vdash a(0) \multimap \exists X.b(X) \tag{4}
$$

$$
P, C\mathcal{T}: \langle a(0), \tau; \emptyset \rangle \nleftrightarrow \langle b(X), \tau; \emptyset \rangle \tag{5}
$$

Theorem (Completeness)

If
$$
P^L, CT^L \vdash S^L \multimap T^L
$$
 then
\n $P, CT : S \mapsto_P^* U$ and $CT^L \vdash U^L \multimap T^L$.

Linear Logic and State Equivalence

Implicit State Equivalence

$$
\begin{array}{lll}\n\vdash& \langle \mathbf{u(0)};\top; \{X\} \rangle^{\mathcal{L}} \circ \neg \circ \langle \mathbf{u(0)};\top; \emptyset \rangle^{\mathcal{L}} \\
C\mathcal{T}^{\mathcal{L}} & \vdash & \langle \mathbf{u(X)}; X = 0; \{X\} \rangle^{\mathcal{L}} \circ \neg \circ \langle \mathbf{u(0)}; X = 0; \{X\} \rangle^{\mathcal{L}} \\
C\mathcal{T}^{\mathcal{L}} & \vdash & \langle \mathbb{U}; \bot; \mathbb{V} \rangle^{\mathcal{L}} \circ \neg \circ \langle \mathbb{U}'; \bot; \mathbb{V}' \rangle^{\mathcal{L}}\n\end{array}
$$

Equivalence of States (Preliminary Definition)

$$
S \equiv T \quad \Leftrightarrow \quad C \mathcal{T}^L \vdash S^L \circ \multimap \mathcal{T}^L
$$

Axiomatic Definition of Equivalence

State Equivalence

Let state equivalence be the smallest equivalence relation ≡*^e* over states such that:

1.
$$
\langle \mathbb{U}; X = t \wedge \mathbb{B}; \mathbb{V} \rangle \equiv_e \langle \mathbb{U}[X/t]; X = t \wedge \mathbb{B}; \mathbb{V} \rangle
$$

2. Let $\bar{s}_i = \text{vars}(\mathbb{B}_i) \setminus \text{vars}(\mathbb{U}, \mathbb{V})$. If $\mathcal{CT} \models \exists \bar{s}_1 \cdot \mathbb{B}_1 \leftrightarrow \exists \bar{s}_2 \cdot \mathbb{B}_2$ then

hU; B1; Vi ≡*^e* hU; B2; Vi

3. For $X \notin \text{vars}(\mathbb{U}, \mathbb{B})$, $\langle \mathbb{U}; \mathbb{B}; \{X\} \cup \mathbb{V} \rangle \equiv_e \langle \mathbb{U}; \mathbb{B}; \mathbb{V} \rangle$

4. $\langle \mathbb{U}; \bot; \mathbb{V} \rangle \equiv_e \langle \mathbb{U}'; \bot; \mathbb{V}' \rangle$

Coincidence of Equivalence Definitions

Theorem (Coincidence of Definitions)

The *axiomatic* definition of state equivalence coincides with *implicit* state equivalence:

$$
S \equiv_e T \quad \Leftrightarrow \quad CT^L \vdash S^L \leadsto T^L
$$

Safety Properties

Safety Properties

Any property of the form $P, C\mathcal{T}: S \nleftrightarrow T$ is called a *safety property*.

Sufficient Criterion for Safety Properties

$$
P^{\mathsf{L}}.\mathcal{CT}^{\mathsf{L}} \times S^{\mathsf{L}} \multimap \mathcal{T}^{\mathsf{L}} \quad \Rightarrow \quad P,\mathcal{CT}: S \not\mapsto^* \mathcal{T}
$$

Operational Equivalence

Definition (Operational S-Equivalence)

Two CHR programs *^P*1,*P*² are *operationally* ^S*-equivalent* if for any two states *S* and $\langle \emptyset; \mathbb{B}; \mathbb{V} \rangle$, we have:

 $P_1, C\mathcal{T}: S \mapsto^* \langle \emptyset; \mathbb{B}; \mathbb{V} \rangle \Leftrightarrow P_2, C\mathcal{T}: S \mapsto^* \langle \emptyset; \mathbb{B}; \mathbb{V} \rangle$

Sufficient Criterion for Operational S-Equivalence

Definition: Confluence

A CHR program *P* is *confluent* if for all states *S*, *T*, *T'* such
that *S* \mapsto ^{*} *T* and *S* \mapsto ^{*} *T'*, there exists a state *T''* such that that $S \mapsto^* T$ and $S \mapsto^* T'$, there exists a state T'' such that $T \mapsto^* T''$ and $T' \mapsto^* T''$.

Logical equivalence is *sufficient* for S-equivalence:

Theorem: $\mathcal{S}\text{-}\mathsf{Equivalence}$

Let *^P*1,*P*² be *confluent* CHR programs such that:

$$
CT^L \vdash P_1^L \circ \neg \circ P_2^L
$$

Then P_1 , P_2 are *S*-equivalent.

Outlook

Further Applications

- ► Extension to CHR with search (CHR^V)
	- \blacktriangleright Embedding LP programs
	- Deciding operational equivalence across language paradigms
- \triangleright Novel ways to deal with propagation
	- \triangleright Trivial non-termination in naive semantics
	- \blacktriangleright Inspired by "bang" exponential:
	- Finite representation of infinite states

Summary

- \triangleright Linear Logic ...
	- **I.** . . . deals with resources *and* truths
	- \cdot ... is non-monotonic
	- \cdot ... embeds classical logic
- \triangleright CHR \ldots
	- \cdot ... corresponds to a subset of linear logic
	- \triangleright ... can be analysed using linear logic
- \triangleright Applications include ...
	- \blacksquare ... motivation and justification for state equivalence
	- \cdot ... checking safety properties
	- \blacksquare ... deciding operational equivalence
	- \cdot ... even across language paradigms