

Linear-Logic Based Analysis of **Constraint Handling Rules**

Hariolf Betz | September 2010 | CHR Summer School 2010

Classical Logic I

What is Logic?

- "The study of correct reasoning, especially as it involves the drawing of inferences." (Encyclopaedia Britannica)
- "The anatomy of thought." (John Locke)
- "The art of going wrong with confidence." (Joseph Wood Krutch)

Classical Logic II

Logical Symbols

- Connectives: $\land \rightarrow \lor \lor \neg$
- ▹ Consequence: ⊨
- Quantifiers: 3 V

- rain \land sun \rightarrow rainbow
- ► |= rain ∨ ¬rain
- rain \rightarrow wet, rain \models wet
- rain \rightarrow wet, rain \models rain \land wet
- ▶ $\forall D.rain(D) \rightarrow wet(D), rain(today) \models wet(today)$

Classical Logic III

Semantical vs. Syntactical Consequence

- $\varphi_1,\ldots,\varphi_n\models\psi$
 - semantical consequence
 - model-theoretic characterization

•
$$\varphi_1, \ldots, \varphi_n \vdash \psi$$

- syntactical consequence
- proof-theoretic characterization

Non-Classical Logics

- extensions of CL /deviations from CL
- truth value/interpretation/model?

Linear Logic I

(Multiplicative) Conjunction)

$$CL
A, B \models A \land B
A, A \models A \land A
A \equiv A \land A
$$\begin{cases}
A \vdash A \land A \\
A \land A \vdash A
\end{cases}$$$$

LL $A, B \vdash A \otimes B$ $A, A \vdash A \otimes A$ $A \neq A \otimes A$ $<math display="block">\begin{cases}
A \nvDash A \otimes A \\
A \otimes A \nvDash A
\end{cases}$

set semantics truths

multi-set semantics resources

- rain \wedge rain \equiv rain
- coffee ⊗ coffee ≠ coffee

Linear Logic II

(Linear) Implication

CL			
$A, A \rightarrow$	$B \models$	В	
$A, A \rightarrow$	$B \models$	$A \wedge$	В

LL $A, A \multimap B \vdash B$ $A, A \multimap B \nvDash A \otimes B$

strictly monotonic consequence

"consumes" precondition state transition

- rain \rightarrow wet, rain \models rain \land wet
- ► euro → coffee, euro ⊢ coffee
- euro \rightarrow coffee, euro u euro \otimes coffee

Linear Logic III

(Additive) Conjunction			
CL	LL		
$A \land B \models A$	$A \otimes B \nvDash A$	<i>A</i> & <i>B</i> ⊢ <i>A</i>	
$A \land B \models B$	$A \otimes B \nvDash B$	<i>A</i> & <i>B</i> ⊢ <i>B</i>	
$A, B \vdash A \land B$	$A, B \vdash A \otimes B$	A, B ⊭ A&B	

- ► coffee&pie ⊢ coffee
- ► coffee&pie ⊢ pie
- ► coffee&pie ⊬ coffee ⊗ pie

Linear Logic IV

"Bang" exponential

CL	LL
$A \equiv A \wedge A$	$A \not\equiv A \otimes A$
	$A \otimes B \not\equiv A \& B$

 $|A \equiv |A \otimes |A|$ $|A \otimes |B \equiv |(A \& B)|$

restores set-semantics unifies \otimes and &

- rain \rightarrow wet, rain \models rain \land wet
- rain → wet, rain ⊬ rain ⊗ wet
- I(rain → wet), !rain ⊢!rain⊗!wet
- ▶ $!(euro \multimap coffee&pie) \vdash euro \otimes euro \multimap coffee \otimes pie$

Linear Logic V: Embedding of Classical Logic

Consequences of "bang"

- restores properties of CL
- selective recovery or full embedding

Possible Interpretation

unbanged formula banged formula

F

resource unlimited resource / proposition state transition? logical consequence? ⇒ aspects of both Linear Logic VI: First-order Linear Logic

FOLL by Example

- All pies are one euro:
- ▶ $!\forall P.!$ is_pie(P) (euro pie(P))
- Some pies are one euro:
- ▶ $!\exists P.!is_pie(P) \otimes (euro \multimap pie(P))$

Translation of States

Translation of States by Example

⟨ a , a ; ⊤; ∅⟩ [∠]	::= a ⊗ a
$\langle \mathbf{c}(X); X > 0; \{X\} \rangle^L$	$::= \mathbf{c}(X) \otimes !(X > 0)$
$\langle \mathbf{c}(X); Y > 0; \{X\} \rangle^{L}$	$::= \exists Y.\mathbf{c}(X) \otimes ! (Y > 0)$

Translation of States

user-defined constraints built-in constraints global variables local variables unbanged atoms banged atoms free variables ex. quantified variables

Translation of Rules

Translation of Rules by Example

$$\begin{array}{l} \mathbf{a} \Leftrightarrow \mathbf{b} & \langle \mathbf{a}; \top; \emptyset \rangle \mapsto \langle \mathbf{b}; \top; \emptyset \rangle \\ ! (\mathbf{a} \multimap \mathbf{b}) \vdash \mathbf{a} \multimap \mathbf{b} & \end{array}$$

$$\begin{array}{ll} \mathbf{a}(X) \Leftrightarrow \mathbf{b}(X) & \langle \mathbf{a}(0); \top; \emptyset \rangle \mapsto \langle \mathbf{b}(0); \top; \emptyset \rangle \\ ! \forall (\mathbf{a}(X) \multimap \mathbf{b}(X)) \vdash \mathbf{a}(0) \multimap \mathbf{b}(0) \end{array}$$

$$\begin{array}{l} \mathbf{a}(X) \Leftrightarrow X \ge 0 \mid \mathbf{b}(X) \qquad \langle \mathbf{a}(0); \top; \emptyset \rangle \mapsto \langle \mathbf{b}(0); \top; \emptyset \rangle \\ ! \forall (!(X \ge 0) \multimap (\mathbf{a}(X) \multimap \mathbf{b}(X))) \vdash \mathbf{a}(0) \multimap \mathbf{b}(0) \end{array}$$

 $\begin{array}{l} \mathbf{a} \Rightarrow \mathbf{b} & \langle \mathbf{a}; \top; \emptyset \rangle \mapsto \langle \mathbf{a}, \mathbf{b}; \top; \emptyset \rangle \\ !(\mathbf{a} \multimap \mathbf{a} \otimes \mathbf{b}) \vdash \mathbf{a} \multimap \mathbf{a} \otimes \mathbf{b} \end{array}$

Soundness and Completeness of Linear Logic Semantics

Soundness

$$P, CT : S \mapsto^{*} T \implies P^{L}, CT^{L} \vdash S^{L} \multimap T^{L}$$
No Completeness?

$$P^{L}, CT^{L} \vdash S^{L} \multimap T^{L} \implies P, CT : S \mapsto^{*} T$$

Implicit Weakening in the Completeness Result

Example: Implicit Weakening

Let $P = \{a(X) \Leftrightarrow b(X)\}.$

$$P, C\mathcal{T} : \langle a(0); \top; \emptyset \rangle \mapsto \langle b(0); \top; \emptyset \rangle$$
(1)

$$P^{L}, C\mathcal{T}^{L} \vdash a(0) \multimap b(0)$$
(2)

$$b(0) \multimap \exists X.b(X) \tag{3}$$

$$P^{L}, C\mathcal{T}^{L} \vdash a(0) \multimap \exists X.b(X)$$
(4)

$$\mathsf{P}, C\mathcal{T} : \langle a(0); \top; \emptyset \rangle \not\mapsto \langle b(X); \top; \emptyset \rangle \tag{5}$$

Theorem (Completeness)

If
$$P^L, C\mathcal{T}^L \vdash S^L \multimap T^L$$
 then
 $P, C\mathcal{T} : S \mapsto_P^* U$ and $C\mathcal{T}^L \vdash U^L \multimap T^L$.

F

Linear Logic and State Equivalence

Implicit State Equivalence

$$\begin{array}{l} \vdash \langle \mathbf{u}(\mathbf{0}); \top; \{X\} \rangle^{L} \leadsto \langle \mathbf{u}(\mathbf{0}); \top; \emptyset \rangle^{L} \\ C\mathcal{T}^{L} & \vdash \langle \mathbf{u}(\mathbf{X}); X = 0; \{X\} \rangle^{L} \leadsto \langle \mathbf{u}(\mathbf{0}); X = 0; \{X\} \rangle \\ C\mathcal{T}^{L} & \vdash \langle \mathbb{U}; \bot; \mathbb{V} \rangle^{L} \leadsto \langle \mathbb{U}'; \bot; \mathbb{V}' \rangle^{L} \end{array}$$

Equivalence of States (Preliminary Definition)

$$S \equiv T \quad \Leftrightarrow \quad C\mathcal{T}^L \vdash S^L \leadsto T^L$$

Axiomatic Definition of Equivalence

State Equivalence

Let state equivalence be the smallest equivalence relation \equiv_e over states such that:

1.
$$\langle \mathbb{U}; X = t \land \mathbb{B}; \mathbb{V} \rangle \equiv_{e} \langle \mathbb{U}[X/t]; X = t \land \mathbb{B}; \mathbb{V} \rangle$$

2. Let $\bar{s}_i = vars(\mathbb{B}_i) \setminus vars(\mathbb{U}, \mathbb{V})$. If $C\mathcal{T} \models \exists \bar{s}_1.\mathbb{B}_1 \leftrightarrow \exists \bar{s}_2.\mathbb{B}_2$ then

 $\langle \mathbb{U}; \mathbb{B}_1; \mathbb{V} \rangle \equiv_e \langle \mathbb{U}; \mathbb{B}_2; \mathbb{V} \rangle$

3. For $X \notin vars(\mathbb{U}, \mathbb{B}), \langle \mathbb{U}; \mathbb{B}; \{X\} \cup \mathbb{V} \rangle \equiv_e \langle \mathbb{U}; \mathbb{B}; \mathbb{V} \rangle$

4. $\langle \mathbb{U}; \bot; \mathbb{V} \rangle \equiv_e \langle \mathbb{U}'; \bot; \mathbb{V}' \rangle$

Coincidence of Equivalence Definitions

Theorem (Coincidence of Definitions)

The *axiomatic* definition of state equivalence coincides with *implicit* state equivalence:

$$S \equiv_e T \quad \Leftrightarrow \quad C\mathcal{T}^L \vdash S^L \leadsto T^L$$

Safety Properties

Safety Properties

Any property of the form $P, CT : S \nleftrightarrow T$ is called a *safety* property.

Sufficient Criterion for Safety Properties

$$P^{L}, C\mathcal{T}^{L} \nvDash S^{L} \multimap T^{L} \quad \Rightarrow \quad P, C\mathcal{T} : S \not\mapsto^{*} T$$

Operational Equivalence

Definition (Operational S-Equivalence)

Two CHR programs P_1 , P_2 are *operationally S*-equivalent if for any two states *S* and $\langle \emptyset; \mathbb{B}; \mathbb{V} \rangle$, we have:

 $P_1, C\mathcal{T} : S \mapsto^* \langle \emptyset; \mathbb{B}; \mathbb{V} \rangle \quad \Leftrightarrow \quad P_2, C\mathcal{T} : S \mapsto^* \langle \emptyset; \mathbb{B}; \mathbb{V} \rangle$

Sufficient Criterion for Operational S-Equivalence

Definition: Confluence

A CHR program *P* is *confluent* if for all states *S*, *T*, *T'* such that $S \mapsto^* T$ and $S \mapsto^* T'$, there exists a state *T''* such that $T \mapsto^* T''$ and $T' \mapsto^* T''$.

Logical equivalence is *sufficient* for *S*-equivalence:

Theorem: S-Equivalence

Let P_1 , P_2 be *confluent* CHR programs such that:

$$C\mathcal{T}^L \vdash P_1^L \leadsto P_2^L$$

Then P_1 , P_2 are *S*-equivalent.

Outlook

Further Applications

- ► Extension to CHR with search (CHR[∨])
 - Embedding LP programs
 - Deciding operational equivalence across language paradigms
- Novel ways to deal with propagation
 - Trivial non-termination in naive semantics
 - Inspired by "bang" exponential:
 - Finite representation of infinite states

Summary

- Linear Logic ...
 - ... deals with resources and truths
 - ... is non-monotonic
 - ... embeds classical logic
- ▶ CHR ...
 - ... corresponds to a subset of linear logic
 - ... can be analysed using linear logic
- Applications include ...
 - ... motivation and justification for state equivalence
 - ... checking safety properties
 - ... deciding operational equivalence
 - ... even across language paradigms