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1 Factorial

As input you get f(1),f(2),...,f(n). As output we want one constraint
f(n!). Remember that n! is defined as follows: n! = n(n− 1)(n− 2) . . . 1.

2 Equality constraint solver

Remember the less-than-or-equal (leq/2) solver. This is a solver for partial
order relations. Partial orders are reflexive, antisymmetric and transitive.

reflexive @ leq(A,A) <=> true.
idempotent @ leq(A,B) \ leq(A,B) <=> true.
antisymmetry @ leq(A,B), leq(B,A) <=> A=B.
transitivity @ leq(A,B), leq(B,C) ==> leq(A,C).

Modify the above program to make a solver for equality (eq/2). Equality is
an equivalence relation, so it is reflexive, symmetric and transitive.

3 Counting items

You are given as input a sequence of items in i/1 constraints, for example
i(bread), i(cheese), i(water), i(bread). Your task is to count the items.
The output is as n/2 constraints, for example n(bread,2), n(cheese,1),
n(water,1).

4 Shortest paths

The following program takes a directed graph, where the edges are represented
as e/2 constraints (e(A,B) means that there is a (directed) edge from A to B),
and computes the reachability relation p/2 (where p(A,B) means that there is
some path from A to B).

e(X,Y) ==> p(X,Y).
p(X,Y) \ p(X,Y) <=> true.
e(X,Y), p(Y,Z) ==> p(X,Z).

Modify the above program such that it computes the distance relation d/3,
where d(A,B,N) means that the shortest path to go from A to B uses N edges.
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Hints for the actual contest

We suggest the following order to solve the actual contest: first problem 4, then
problem 6, then problem 1, then problem 2, then problem 5 and then problem 3.

Here are some hints for each problem:

Problem 1: Start from the following Sudoku solver program, (it takes input
as sudoku/1 in the same way as requested):

http://dtai.cs.kuleuven.be/CHR/summerschool/contest/sudoku.chr

Problem 2: Here is a high-level algorithm sketch:
For the input board(X,Y, ), it suffices to compute all prime numbers below

X+Y. You can use the following program to generate prime numbers:

primes(1) <=> true.
primes(N) <=> N1 is N-1, prime(N), primes(N1).
prime(A) \ prime(B) <=> 0 is B mod A | true.

Create all board positions using a nested loop (in Prolog or CHR) — make
board positions as pos(X,Y,P) constraints, where (X,Y) is the position, and
P is a variable that gets assigned ’K’ or ’.’. Try all possible assignments
using Prolog disjunction. Fail if you find a conflict (some knight that can take
some other knight). Print out the board layout using another nested loop. You
can use a failure-driven loop to enumerate all possible board layouts: just add
“,fail” after the call to the printing routine so it backtracks until it has found
all solutions.

Problem 3: You can compute the distance D between (Ax,Ay) and (Bx,By)
as follows:

distance(Ax,Ay,Bx,By,D) :- D is sqrt((Ax-Bx)^2 + (Ay-By)^2).

Use iterative deepening to find the optimal solution (first try to find a solution
with 1 bomb, if none is found, try 2 bombs, 3 bombs, and so on).

Problem 4: Should be easy.

Problem 5: Note that the subset relation is a partial order.

Problem 6: Note that preferences are a strict partial order for “rational”
supporters (transitive, irreflexive, antisymmetric) but “irrational” supporters
have reflexive or symmetric preferences.
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