
K.U.Leuven JCHR User’s Manual

Peter Van Weert

Draft Version (December 5, 2006)

Contents

1 Introduction 3
1.1 About the K.U.Leuven JCHR System 3

Disclaimer . 3
1.1.1 Compared to other CHR sytems 3
1.1.2 Compared to other Java CHR sytems 4

1.2 About this Manual . 5
1.2.1 Call for comments . 5
1.2.2 Notation . 5

2 Defining a K.U.Leuven JCHR Handler 6
2.1 Identifiers . 7
2.2 Comments . 8
2.3 The package Declaration . 8
2.4 import Declarations . 9

2.4.1 Single type imports . 9
2.4.2 Type imports on demand . 9
2.4.3 Single static imports . 10
2.4.4 Static imports on demand . 10

2.5 The handler Declaration . 11
2.5.1 Generic handlers . 12

2.6 Declarations . 13
2.6.1 constraint declarations . 14
2.6.2 solver declarations . 15

2.7 Compiler Options . 16
2.8 The rules Section . 16

2.8.1 Variable declarations . 16
2.8.2 Rule Structure . 17

Separators . 17
2.8.3 Conjuncts and arguments . 18

Conjuncts . 18
Constraints . 18
Host language statements 19

Arguments . 19
Implicit arguments . 19

2.8.4 Heads . 20
Implicit variable declarations 20
Implicit guards . 21
Anonymous variables . 22

2.8.5 Guards . 22
2.8.6 Bodies . 23
2.8.7 Pragmas . 23

pragma passive . 23

1

3 Types 26
3.1 Built-in Types . 26

Coercion . 26
3.2 User-defined Types . 27

3.2.1 Type information . 27
Coercion . 27
Declaration/initialization . 27

3.2.2 The modified problem . 27
3.2.3 Observing modifications . 27

Fixed types . 27
Observable user-defined types 28

runtime.Observable 28
runtime.hash.HashObservable 28

3.2.4 An example: runtime.Logical 29
3.2.5 Type modifiers . 29

4 Built-in Constraints and Solvers 31
4.1 Ask versus Tell . 31
4.2 Built-in built-in constraints . 32
4.3 User-defined built-in constraints . 33

4.3.1 Binary constraints . 34
Declaration of infix identifiers 34
Extra metadata . 35

4.3.2 java.util.Comparator solvers 36
4.4 Equality constraints . 36

Required properties . 37
The equals method . 37

4.5 JCHR handlers as built-in solvers . 37

5 Compiling a K.U.Leuven JCHR Handler 38
5.1 Requirements . 38
5.2 Compilation . 39

5.2.1 Compiler options . 39
5.2.2 Generated code . 40

6 Using a K.U.Leuven JCHR Handler 41
6.1 Requirements . 41
6.2 Stand-alone . 41
6.3 Integration with Java . 41

7 Debugging a K.U.Leuven JCHR Handler 45
7.1 Trace Debugger . 45

A Example programs 47

B Running a Java Program 55
B.1 Verifying Java Platform version . 55
B.2 Setting the Java class search path . 55

C Benchmarking JCHR 57

2

Chapter 1

Introduction

1.1 About the K.U.Leuven JCHR System

The K.U.Leuven JCHR System [VW05, VWSD05, VW06] is a high-performance
integration of Constraint Handling Rules (CHR) [SF+06, Frü98] and Java [Sunb].
For proper understanding, we assume the reader familiar with both languages.

As a powerful forward-chaining rule-based language, JCHR allows for very high-
level, declarative programming of constraint-based algorithms and applications.
The syntax is designed to feel familiar to Java programmers, whilst maintaining
the declarativeness inherited from CHR. It also allows an easy porting from/to
other CHR systems. The intuitive operational semantics of CHR [DSdlBH04] –
fully adopted by JCHR – remedies the lack of clear semantics sometimes perceived
in other, similar rule-based systems. JCHR is currently by far the most efficient
implementation of CHR in Java [AKSS01, Wol01, VA06]. Its performance is com-
petitive with state-of-the-art CHR systems in e.g. HAL [dlBDMS02, HdlBSD05]
and Prolog [Sch06, SD04, Sch05, HF00].

Disclaimer The current version, version 1.5.0, is a prototype, proof of concept
implementation, developed to test and demonstrate the architecture, and to be used
as a research vehicle. However, though there might be some implementation issues
and bugs distinguishing it from a production-quality system, it is certainly complete
and stable enough to be used readily in your applications. The system is also under
active development, and each release is a step forward! We kindly ask our users to
submit all issues they encounter, so we can keep improving the system.

1.1.1 Compared to other CHR sytems

There exist CHR implementations for several different host languages:

1. Prolog After the language’s conception in 1991 by Thom Frühwirth, some
experimental systems were implemented in, amongst others, ECLiPSe Pro-
log [FB95a, FB95b] and Sepia*. The first full implementation of CHR was
developed by Christian Holzbaur and Thom Frühwirth for SICStus Prolog
[HF99, HF00], and later ported to Yap Prolog. This system is considered the
reference implementation. Currently, probably the best, state-of-the-art CHR
compiler for Prolog is the K.U.Leuven CHR System [Sch06, SD04, Sch05].
This system was first hosted by hProlog, but soon ported to XSB [SWD03]
and SWI Prolog [SWD05]. More recently, the system has also been ported
to YAP Prolog, replacing the old reference implementation, and to bProlog
[SZD06].

3

2. HAL The SICStus reference implementation was first ported to the HAL lan-
guage by its original author, Christian Holzbaur. Later the HAL CHR com-
piler was rewritten by Gregory Duck [dlBDMS02, HdlBSD05].

3. Haskell Martin Sulzmann et al. wrote a CHR system for the Haskell variant
Chameleon to support their work on customizable type systems [SS01, SS05].
This first Haskell implementation was later replaced by the HaskellCHR im-
plementation [Duc05] by Gregory Duck.

4. Java Next to the K.U.Leuven JCHR System, there exist at least three other
CHR implementations in Java. More information can be found in the next
subsection.

All major CHR implementations (except some of the Java systems, cf. infra)
feature similar syntax, often somewhat tailered to the host language, and the same
semantics [DSdlBH04]. Of course, this is also the case for the K.U.Leuven JCHR
System. Therefore porting programs between these systems is easy, as long as the
programs do not rely too much on host language features or built-in constraints.
The main differences between K.U.Leuven JCHR and the other systems are indeed
mostly due to the greatly different host languages:

• Java is an imperative language, and does not offer built-in search/backtracking
capabilities. C(L)P languages like Prolog and HAL on the other hand do. This
synergy between forward chaining rules and backtracking search is why CHR
systems hosted by the latter host languages are very well suited for the high-
level declaration of constraint solvers, which is the original goal of CHR. The
K.U.Leuven JCHR System can currently only be used to implement purely
forward-chaining rule-based programs. This is nevertheless a vast class of
programs (in fact, JCHR is Turing complete [tur]). It is possible to implement
a search engine on top of Java, as is shown by the systems discussed in the
next section, but at the moment K.U.Leuven JCHR comes without such search
capabilities.

• Java is an object-oriented language. Complex data types (objects) therefore
differ greatly from those used in other, more traditional CHR host languages
(compound terms). Unlike non-Java CHR systems (and Dynamic Java Con-
straint Handling Rules (DJCHR)) K.U.Leuven JCHR does not feature sym-
bolic representation and matching of terms. Instead, all data types are Java
types (cf. Section 3). We will however see in Section 3.2.4 that it is easy
to represent e.g. logical variables as a Java class. Indeed the K.U.Leuven
JCHR System is designed to allow arbitrary user-defined types (Section 3)
and built-in constraints (Section 4).

• Java is a strongly-typed language, whereas the most prominent CHR host lan-
guage, Prolog, is untyped. We will see in Chapter 2 that this just means
JCHR handler and constraint declarations will contain extra type declara-
tions. For the users of the Prolog K.U.Leuven CHR System this should feel
very familiar, since type declarations are already commonplace there (as they
are indispensible for analysis and optimization).

1.1.2 Compared to other Java CHR sytems

In this section we will discuss three other Java CHR systems, and compare them
with K.U.Leuven JCHR:

• Java Constraint Kit (JaCK) [AKSS01, Sch99]

4

• DJCHR [Wol01]

• chord [VA06]

1.2 About this Manual

This document contains the user’s manual for the latest version of the K.U.Leuven
JCHR System. At the time of writing, this is version 1.5.0. Documentation for
earlier versions of the system will not be maintained (the manual evolves together
with the system), so we encourage you to always update to the latest version. This
might require some minor changes to source files from time to time, but we think
this will never be a real problem: after all, each new version should be a step
forward.

1.2.1 Call for comments

The K.U.Leuven JCHR System at the moment is still a proof-of-concept – a concept
it is well on its way of proving by the way. Likewise, this manual is only a draft
version of what the final version might look like. If something is still not clear after
reading this text, please let us know. We are more than happy to help you out,
and it will help us improve this manual. If you have any ideas for new features the
system should provide, or for other improvements, do not hesitate to let us know.
We are always looking for ways to improve the K.U.Leuven JCHR System.

1.2.2 Notation

Sections, paragraphs or sentences annotated like this one (in the margin), concern vx.y.z
features or properties only valid for versions of the system higher than or equal to
the one in the annotation. Earlier versions will not contain that particular feature
or behave differently than described there.

Future thoughts
Sections typeset like this one contain general ideas, possible improvements, etc. that might
be incorporated in the future. This can give you an idea in which direction the K.U.Leuven
JCHR Systemmight be evolving. If there is a problem with the current version (and it is
not a bug), there is a big chance it will be in one of these sections. If you do need such
a feature, be sure to let us now, and we might be able to accommodate you. We are also
always interested in your views on the ideas put forward in these sections.

5

Chapter 2

Defining a K.U.Leuven
JCHR Handler

The K.U.Leuven JCHR syntax is designed to feel familiar to both Java and CHR
adapts. Handlers feature strong syntactical resemblance to Java classes, constraint
declarations with Java method signatures, etc. Also, the variables and expressions
you can use throughout the rule declarations are essentially the same as in Java.
The rules themselves on the other hand, try to offer the high-level, declarative
approach, inherited from more traditional CHR systems. The latter are mostly
implemented in Prolog, but also in other declarative languages, like Haskell and
HAL. The proposed language therefore also aims at an easy porting from and to
more Prolog-like syntax.

In this chapter, we consider several aspects – mostly syntactical – of a JCHR
handler declaration. Like we said before, a handler source file is very similar to a
typical Java compilation unit (with a single class declaration):

package packagename ;

import ...;
...
import ...;

modifiers handler identifier {
...

}

As illustrated by the above skeleton:

1. The very first thing that has to be done, is to declare to which Java package v1.5.0
the handler belongs. More details follow in Section 2.3.

2. Next, like we know from a typical Java compilation unit, we import all classes
and members we want to use in the remainder of the handler. More informa-
tion can be found in Section 2.4.

3. Following the (optional) package declaration and imports, comes the actual
handler block, in which the JCHR constraint handler is declared. This is of
course the main part, and will be explained in Sections 2.5–2.8.

4. As in Java, and in fact most programming languages, comments can be used
at virtually any place of the code. We discuss comments in Section 2.2.

6

handler
constraint
solver
option
rules
local
fail

Table 2.1: K.U.Leuven JCHR keywords

Entities Allowed initial characters
handlers, solvers, constraints, rules Lower case character or ’ ’
variable, arguments, occurrences Upper case character or ’ ’

Table 2.2: Allowed initial characters of a K.U.Leuven JCHR identifier. Note that a
dollar mark never is allowed as the first character (because the compiler internally
uses this to generate its own, unique identifiers).

First however, Section 2.1 explains which identifiers you are allowed to use in a
K.U.Leuven JCHR program. Restrictions regarding identifiers will not be repeated
in the remainder of the text, unless this repetition is significant.

Future thoughts
We are considering to take the analogy with a Java compilation unit even further:

• Ideally, we would like to elevate the handler declaration to the same level as similar
type declarations (class, interface or enum) in a compilation unit. This would
mean that multiple types can be declared in the same compilation unit, alongside the
handler (even other handlers), as long as there is only one public type declaration
(which does not have to be the handler). This could also mean that inner handler
type declarations become possible, etc. Cf. page 12 for related ideas concerning the
analogy between handler and class declarations.

2.1 Identifiers

The identifiers used in a K.U.Leuven JCHR handler to name the different entities
(variables, handlers, etc.) have to be valid Java identifiers. In short this means
that identifiers:

• are composed of alphanumerical, Unicode characters (including a–z, A–Z, 0–
9), underscore () and dollar mark ($)

• do not start with a digit

• are not equal to a Java keyword (listed in [GJSB04], Section 3.9) or literal
(true, false or null).

For full details on Java identifiers, we refer to Section 3.8 of the Java Language
Specification [GJSB04].

We further constrain the identifiers by rejecting the keywords introduced by
K.U.Leuven JCHR, listed in Table 2.1. For practical and conventional reasons
we also impose some extra limitations on the initial character of the identifiers.
Table 2.2 shows an overview.

In the remainder of this text we will no longer come back to these naming rules.
We will also never explicitly stress that identifiers have to be unique within their
apparent contexts. Identifiers are case sensitive, as in most programming languages.

7

2.2 Comments

Comments in K.U.Leuven JCHR are completely analogous to comments in Java (cf.
[GJSB04], Section 3.7), i.e. there are:

1. Single line comments (a.k.a. end-of-line comments): all text from the char-
acters // until the end of the line is ignored (including for instance /* and
*/).

2. Multiple line comments (a.k.a. traditional comments): all text between the
character sequences /* and */ is ignored (including for instance //).

Future thoughts
There exists a third type of comments in Java, JavaDoc comments, similar to a multiple
line comment, but enclosed with /** ... */. These comments are used for generating
API documentation in HTML format. More information can be found on the JavaDoc
home page [Sun06c].
Though the generated code is not really intended to be read by users, it would be very
interesting not only to deliver compiled handler and constraint classes, but also the accom-
panying documentation (i.e. JavaDoc). So, it would be nice to allow JavaDoc comments
for the handler block, and possibly also for constraint and other declarations, and to propa-
gate them to the generated code. In anticipation, you can of course already write JavaDoc
comments: they are simply treated as multiple line comments for the moment.

2.3 The package Declaration
v1.5.0

Just like a compilation unit in Java, a JCHR handler source file starts with a package
declaration to indicate the package to which the handler belongs1. Classes belonging
to the same package as the handler will not have to be imported explicitly (cf. infra).
Within its package, the handler can also access types and members declared with
default access, and class members declared with the protected access modifier. From
other packages, only public types and members are accessible. This is exactly the
same as in Java.

If no package declaration is provided, the handler becomes part of the unnamed
package. The use of the unnamed package is generally not advised, as classes from
the unnamed package cannot be imported, and thus not used, by classes in any
other package. It is as [GJSB04] states:

Unnamed packages are provided by the Java platform principally for
convenience when developing small or temporary applications or when
just beginning development.

Although not yet enforced by the K.U.Leuven JCHR compiler, it is the conven-
tion to store the JCHR handler source files in the same directory as used for the
package. Following another convention – naming the handler source file after the
JCHR handler it declares – will then ensure that there can never be more than one
handler with the same name in the same package.

Future thoughts

• We might start enforcing (some of) the above conventions soon.

• Accessing non-public members is currently not yet supported, even if they are part
of the same package as the handler. This will be remedied in one of the next releases.

1 It is in fact the package to which the generated handler class file belongs: cf. Section 5.2.2.

8

2.4 import Declarations

The import statements used by the K.U.Leuven JCHR are completely equivalent
to the ones we know from Java. This means they are an optional tool allowing
a programmer to tell the compiler which Java types (classes or interfaces) might
be used by the program. Without the use of an appropriate import declaration,
the only way to refer to a type declared in another package, or a static member of
another type, is to use its cumbersome fully qualified name (cf. infra).

In the remainder of the section we give an overview of all essential aspects of the
four different import declarations supported by the K.U.Leuven JCHR System. We
always adhere to the Java Language Specification [GJSB04] as much as possible. For
example: classes in the package java.lang do not have to be imported explicitly,
nor do classes that are part of the same package as the handler (cf. the previous v1.5.0
section).

Future thoughts

• There are some minor details that are not yet implemented: the compiler will not
complain when importing non-accessible types or members, importing a type with
the same simple name as the handler class or a constraint class, etc. These minutiae
should never pose any problems though.

2.4.1 Single type imports

The syntax for a single-type import is:

import fqn ;

with fqn a fully qualified name of a Java class or interface. For example:

import java.util.List;

The fully qualified name of a class or interface includes its package name (java.util
in the above example) followed by the simple name of the type itself (List). Once
imported, you can (but you do not have to) use a type’s simple name (i.e. without
the package name) instead of the fully qualified name in the rest of the code.

It is not possible to import two types with the same simple name. For example,
the JCHR compiler will reject:

import java.util.List;
import java.awt.List;

The best you can do here is importing only one of the conflicting classes (e.g. the
one that is used the most in the handler) and use the fully qualified name for the
remaining class(es). Implicitly imported types (that is: classes in java.lang, or in
the package the current handler is declarad part of) will never conflict with other v1.5.0
imports. Next section explains the same holds for types imported ‘on demand’.

All this (and more) is indeed completely analogous to single type imports in
Java. More detailed information can be found in Section 7.5.1 of [GJSB04].

2.4.2 Type imports on demand
v1.3.2

type-import-on-demand declarations, as defined in Section 7.5.2 of [GJSB04], are also
supported by the K.U.Leuven JCHR System. A type-import-on-demand declaration
imports all the types of a named type or package as needed. For example

9

import java.util.*;

allows you to address all types in the java.util package using their simple name.
Unlike in Java it is not a compile-time error for a type-import-on-demand declara-
tion to name a type or package that is not accessible or does not exist. Other than
that, type-import-on-demands behave completely analogously to their Java coun-
terpart. This means e.g. that single-type imports shadow type-imports-on-demand.
For example, if your import section looks like this:

import java.awt.*;
import java.util.List;

the simple name List will refer to java.util.List, and not to java.awt.List.
Although it is perfectly correct to do the following imports:

import java.awt.*;
import java.util.*;

using the simple name List will then result in an ambiguity exception. For more
information, we refer to the corresponding section of [GJSB04].

2.4.3 Single static imports
v1.4.0

A single-static-import declaration, as introduced to the Java language since version
5 (all details can be found in [GJSB04], Section 7.5.3), imports all static members
with a given simple name from a type. Static members can be static fields (e.g.
java.lang.Math.PI), static methods (e.g. java.lang.Math.sqrt), or a static inner
class (e.g. java.util.Map.Entry). The syntax looks like:

import static fqn.simple name ;

If you e.g. use the following import declarations

import static java.lang.Math.PI;
import static java.lang.Math.sqrt;

you can calculate the radius of a circle with given area a as follows:

sqrt(a / PI);

whereas without static imports you had to use the following, more cumbersome
notation:

Math.sqrt(a / Math.PI);

2.4.4 Static imports on demand
v1.4.0

A static-import-on-demand declaration is to a single-static-import what an import-
on-demand declaration is to a single-type-import. For example:

import static java.lang.Math.*;

allows you to address all (static) constants and methods from the Math class using
their simple names. For all details regarding these import declarations we refer to
the Java Language Specification [GJSB04], Section 7.5.4.

Tip: In anticipation of parser support for arithmetic and boolean logic expres-
sions, you can use static imports to import the methods of util.ArithmeticsUtils
and util.BooleanUtils. v1.4.0

Tip: Static imports also come in handy when using enumeration types: you
can statically import enum values using single-static-imports, or you can directly
import all values of an enum type using a static-import-on-demand.

10

2.5 The handler Declaration

The first thing you have to do is declarating the name of the constraint handler2.
This is the same in a typical Prolog CHR system3. To complete the syntactical
analogy with a Java class declaration (cf. previous sections), a K.U.Leuven JCHR
handler is a Java code-block (i.e. enclosed with ”{” and ”}”). The full skeleton of
a typical handler source file looks like:

package packagename ;

import ...;
...
import ...;

modifiers handler identifier {
...
/* options and declarations */
...
rules {

...
}

}
v1.5.0

The handler declaration will most often be preceded by a public access modifier.
A public handler can be used by any other class. Handlers with no access modifier
are said to have default access, and can only be accessed by classes within the same
package. This is analogous to what is done in Java4.

The handler block itself currently consists of:

1. Declarations of user-defined constraints and built-in constraint solvers. These
are further explained in Section 2.6. For the constraint declarations, the main
conceptual difference with many other (non-Java) CHR implementations is
that argument-types are mandatory.

2. Compiler options, as described in Section 2.7. Declarations and options can
be freely interleaved , as long as they all precede the rules code-block. v1.4.0

3. A single, mandatory rules block (Section 2.8) containing the core of a JCHR
handler: the JCHR rules. The syntax K.U.Leuven JCHR uses for the rules
is very close to the one used in the literature [Frü98], and by most other
CHR systems [H+06, SD04, HdlBSD05]. The main difference is that Java
expressions and statements can be used in the rule declarations.

Porting a pure CHR handler written for another CHR system is thus simply a
mather of:

1. Adding correct (Java) types for all arguments in user-defined constraint dec-
larations.

2 Actually, in JCHR, the first thing that is done are the package declaration, followed by
a series of import declarations. We however do not really consider them part of the handler
declaration: they are just part of the enclosing Java compilation unit of which the handler is one
type declaration (be it currently the only allowed declaration).

3 At the time of writing, the handler declaration of the K.U.Leuven CHR System – only
introduced for compatibility with the old SICStus reference implementation – is deprecated and
will be discontinued in the near future. It is very unlikely this will ever happen in K.U.Leuven
JCHR, since the name of handler is used for the name of the generated class.

4 private or protected are not valid as access modifier of a handler. The former because the
handler declaration currently is the only allowed type declaration of the file, the latter because a
handler declaration is always a top-level type declaration.

11

import runtime.*;

handler leq<T> {
solver EqualitySolver<T>;

constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true.
antisymmetry @ X =< Y, Y =< X <=> X = Y.
idempotence @ X =< Y \ X =< Y <=> true.
transitivity @ X =< Y , Y =< Z ==> X =< Z.

}
}

Listing 1: A generic, lesser-than-or-equal handler in K.U.Leuven JCHR

2. Copying the rules.

3. Adjusting the host language statements (arithmetics, . . .) in guards and
bodies to the corresponding Java statements.

A pure CHR program does not use features of the host-languange, which are
not readily available in Java. In the context of porting from Prolog, this includes
the use of disjunction/backtracking in rule bodies, or symbolic matching on com-
pound terms. If either of these is used in an essential way, porting becomes more
challenging. This is however not surprising, because these are not features of CHR,
but of the host language. We already pointed out these differences in Section 1.1.1.

Future thoughts
Other parts might be added to a handler in the future:

• To strengthen the analogy between a class and a handler, it would be very interesting
to allow a handler to have members (fields, methods, inner classes, etc.).

• We could add goal sections, similar to the ones used by JaCK [Sch99, AKSS01]. For
some more information and related ideas, cf. page 41.

• Another interesting feature would be to allow the user to specify queries in a declar-
ative manner. Resulting methods would then (efficiently) return a collection of all
constraints satisfying user-defined conditions specified in the query declarations.

2.5.1 Generic handlers

To be able to declare polymorphic handlers K.U.Leuven JCHR introduced the notion
of generic handlers. An archetypical example of a polymorphic (generic) handler is
leq, listed in Listing 1. Without support for generics a distinct solver would have to
be declared here for each variable type (handlers like integer leq, string leq, list leq,
. . .). Alternatively, one could write one general handler (like object leq), but this
would necessitate explicit type casting afterwards. Clearly, generic handlers are a
much more powerful, legible and robust solution. They also ease the transition from
traditional, typically untyped CHR systems to strongly typed K.U.Leuven JCHR.

Generic handlers are, of course, completely analogous to generic classes in Java.
Since generics in Java is a relatively new concept5, we will elaborate somewhat

5At least at the time of writing...

12

further. More information on generic types in Java can be found in [Bra04] and in
[GJSB04].

Generics extends the handler declaration with a list of (formal) type parameters,
enclosed by < and >. When a generic handler is instantiated, these will be bound
to actual type arguments (cf. Section ??). These will be a reference type – i.e. they
cannot be a primitive type.

Subsequent type parameters are separated by commas. Each type parameter can
have several upper bounds, limiting the actual type arguments that can be used. An
upper bound is a reference type or one of the type parameters different from and
left of the current parameter.

handler a_handler<T extends Number, S extends T> {...}

An upper bound can itself be a parameterized type. Using formal type parameters
is allowed in a parameterized upper bound, as long as it is located to the left of the
place of use (i.e. including the parameter you are bounding). Several upper bounds
can be used, separated by &’s.

handler some_handler<T extends Cloneable & Comparable<T>> {...}

Since Java does not support multiple inheritance, only one class is allowed as upper
bound. Moreover, this then has to be the first in the list. Each subsequent upper
bound will have to be an interface. When using a type parameter as upper bound,
no other upper bound is allowed.

handler my_solver<T extends Number & Cloneable, S extends T> {...}

Tip: The name of a type parameter can in principle be equal to any Java simple
name, but to avoid confusion6 there exist some conventions [Bra04]:

We recommend that you use pithy (single character if possible) yet
evocative names for formal type parameters. It’s best to avoid lower
case characters in those names, making it easy to distinguish formal
type parameters from ordinary classes and interfaces. Many [...] use E,
for element, [...] K for keys and V for values. [...] We use T for type,
whenever there is not anything more specific about the type to distin-
guish it. [...] If there are multiple type parameters, we might use letters
[...] such as S.

Future thoughts
Wildcards are not yet supported by the K.U.Leuven JCHR System, nor are lower bounds
(see [Bra04] if you do not know what these are). This means for example that you cannot
yet write

handler mergesort<T extends Comparable<? super T>>

(both extra features would be needed here). Luckily, even though the above typing is
certainly better, for most practical uses the following suffices:

handler mergesort<T extends Comparable<T>>

2.6 Declarations

Before you can define the actual JCHR rules (cf. Section 2.8), you have to declare
which user-defined constraints you will be handling (Section 2.6.1), and which built-
in solvers the compiler can use to solve built-in constraints (Section 2.6.2). The

13

order in which the different declarations are done is free , as long as all declarations v1.4.0
precede the rules code-block. The declarations can also be interleaved freely with
compiler options (Section 2.7).

2.6.1 constraint declarations

As in other CHR implementations the first thing to do, after the handler declaration,
is declaring which constraints you will be defining in the remainder of the handler.
Constraints are declared using the constraint keyword, followed by a comma- v1.5.0
separated list of constraint declarations.

Because K.U.Leuven JCHR is a statically typed CHR dialect, each constraint
declaration will include, besides its unique identifier, the formal type of each of its
parameters. In principle, any legal Java type is allowed, including primitive types,
generic types, type parameters, etc. Detailed information on type restrictions is
provided in Section 3.

A constraint declaration also includes an access modifier . As always in Java-like v1.5.0
languages, this modifier precedes the rest of the declaration. Valid access modifiers
are public, protected, private and local, the latter being the only non-Java key-
word. When no access modifier is provided, we say the constraint has default access.
Next we will give some intuitions to what these modifiers mean. The concrete im-
plications will probably become clearer when looking at the actual generated code,
and the access modifiers therein. Some more details on the consequences of access
modifiers can be found in Section 6.3.

• public constraints are constraints that, in the generated code, are accessi-
ble to any other class that can access the handler class (cf. supra). These
constraints can thus be told (that is, more or less, added to the store) from
outside the handler, the content of their constraint store can be inspected and
queried, etc.

• The most restricted access modifier is private, used to declare constraints
that are invisible from outside the handler. These constraints can thus only
be told in the body of rules, the constraint store can never be inspected,
etc. This access modifier is most often used for intermediate or auxiliary con-
straints, or for constraints that should only be told under controlled conditions
(like assertion order, presence of other constraints, . . .). A final advantage of
private constraints is that, as they are virtually invisible, they can easily be
changed, without affecting any user code. Also, the compiler has a bit more
freedom when compiling these constraints, which could result in performance
improvements.

• If a constraint is declared to have default access (i.e. no access modifier was
specified), only classes within the same package as the handler can tell and in-
spect the constraint. These are constraints you want to use in trusted classes
(and thus put in the same package), typically written by yourself, but with-
out exposing them to classes from other users, possibly because uncontrolled
use of these constraints can result in unwanted results. Tip: To protect
the entire handler from unauthorized access, you can also use a non-public
access modifier for the handler (cf. Section 2.5). Then, even if it has declared
public constraints, code from outside the package can never access any of its
constraints, as they cannot access the enclosing handler class.

6 As in Java it is for example allowed to give a type parameter the same name as a class or
interface. handler leq<Integer> {...} for example is perfectly valid. These parameters always
have precedence over other identifiers, leading to unwanted confusion.

14

• The final access modifier known from Java, protected, is similar to default
access, only that subclasses of the generated handler class can also access the
generated constraint code (even if they are part of a different package).

• There is one last, often occurring type of constraints that cannot yet be de-
clared with the above, standard Java access modifiers. For this, we intro-
duce an extra, JCHR specific access modifier: local. local constraints are
constraints that can only be told from within the JCHR rules, but who’s
constraint stores can nevertheless be inspected by external code. A local
constraint is thus a constraint that is half private (the telling part), half
public (the constraint store is publicly inspectable). This mode of access is
particulary useful for constraints that represent results for some JCHR pro-
gram.

A constraint declaration is thus syntacticly very similar to a method signature
in Java (access modifier, unique identifier, followed by a comma-separated list of
argument types, enclosed by round parenthesis). To strengthen this analogy even
further you can also name each of the parameters. Tip: You are strongly advised
to name the arguments of a constraint, because it renders the generated code more
legible and usable.

Future thoughts
At the moment, if the user does not provide an explicit identifier for a certain argument,
the compiler assigns a unique identifier – $i if the i’th argument is unnamed. This results
in getter methods of the form get$i() in the generated constraint class. We might make
the latter inspector methods unaccessible in the future. Or maybe a more fine-grained
way to specify the accessibility of these getter methods is warranted?

The default notation for constraints is the familiar prefix notation (cf. Sec-
tion 2.8.3), but binary constraints can also be written infix. Some constraints
simply read better that way. An example can be found in the leq-handler in List-
ing 1. To declare that a constraint can be written infix, the constraint declaration
has to be followed by the infix keyword and a (unique) infix identifier, or even a v1.5.0
comma-separated list of infix identifiers. Valid infix identifiers are:

1. The ten built-in infix identifiers: =, ==, ===, <, >, <=, =<, >=, != and !==. v1.5.0

2. User-defined infix identifiers: arbitrary7 unicode character sequences sur-
rounded with apostrophes (single quotes), e.g. ’∼>’, ’is larger than or v1.5.0
equal to’ or ’<>’.

2.6.2 solver declarations

Because in principle arbitrary built-in solvers can be used, the concrete built-in
solvers the JCHR compiler can utilize to compile the high-level built-in constraints
in a handler have to be declared. You can read more about this feature, and the
solvers known implicitly by the compiler, in Section 4. Declaring a solver is done
using the solver keyword, followed by the class or interface of the built-in constraint
solver. As always, these types can be parameterized. It is also possible to assign a
solver a unique identifier in the usual way. In subsection 2.8.3 on page 18 we will
see why this can be useful to disambiguate constraint identifiers.

7 You can even use escaped characters (even escaped single quotes!) if you feel the need.

15

2.7 Compiler Options

Like most more mature systems the K.U.Leuven JCHR offers the possibility to pass
options down to the compiler. The syntax is:

option(option name , value);

Supported are in principle options with boolean, integer or string literals as value.
Certain special purpose option values have also been added for particular options.
Following Prolog on/off is also supported as boolean literals for options, next to
the more common Java-like true/false. For completeness, yes/no can also be v1.4.0
used. An overview of the options that can currently be set in JCHR handler source
code: v1.4.0

Name Values Default Description
hash boolean true Toggles use of hash indices
debug off/default/full default See Section 7.1

Certain options (currently all the above) can also be set by providing it to the
compiler using command line options, as we will see in Section 5.2.1. The latter
options will override options set in the source code if they have the same name.

2.8 The rules Section

The rules code block is the very heart of a JCHR handler declaration. Before we
come to the most essential part however, the declaration of the actual JCHR rules,
we first need to say a few words on variables and typing.

2.8.1 Variable declarations

Since K.U.Leuven JCHR is strictly typed, the compiler needs to know the type of
each variable. Luckily, for variables used already in the head of the rule, the compiler
can infer the type from the declaration of the constraint. So variables that are used v1.4.0
as a top-level argument in a head of a rule do not have to be declared explicitly.
For more information on these implicit variable declarations in rule heads, we refer
to Section 2.8.4.

Variables that are used for the first time in the body of a rule, referred to as
local variables, do have to be declared explicitly. The variable keyword, which was
borrowed from JaCK [Sch99, AKSS01], has been deprecated. Instead, to declare v1.4.0
the type of a local variable, the local keyword is used, followed by the type of the
variable and a comma-separated list of identifiers. These identifiers cannot start
with an underscore, as these identifiers are reserved for anonymous variables (cf. v1.3.0
Section 2.8.4). Rule declarations and variable declarations can be interleaved freely, v1.4.0
as long as the declaration of local variables is done before it is used for the first
time. If you declare a variable, but never use it in the body of some rule, a warning
is raised. v1.4.0

A non-local variable declared implicitly in the head of some rule, with the same
identifier as used earlier in a local variable declaration, will hide the local variable. v1.4.0
It is then also no problem if their types do not match. If the identifier of a local
variable is equal to the simple name of some (imported) reference type, or the name
of a (statically imported) field, a warning is given by the compiler because the v1.4.0
variable will hide the type or field, which could lead to unwanted confusion.

On a more semantic level: the variables you are declaring in K.U.Leuven JCHR
are not logical variables per se as is the case in JaCK [Sch99, AKSS01]; instead,
these variables are true Java variables, with actual Java types. More information
on type restrictions can be found in Section 3.

16

Future thoughts

• The fact that local variables have to be declared before (i.e. higher in the source
code) is, however logical, only an implementation issue. This restriction might be
relaxed in later versions.

• You cannot yet use a variable for the first time in the guard of a rule. There is no
real reason for this, it is just not yet implemented.

• There is a small implementation issue with first-time uses of variables in non-variable
expressions in the head of a rule: cf. the future thoughts paragraph in Section 2.8.4.

2.8.2 Rule Structure

A rule consists of three major parts, each described in detail in one of the subse-
quent sections: the head (Section 2.8.4), the guard (Section 2.8.5), and the body
(Section 2.8.6).

As in most, if not all, CHR systems, there are three types of rules. The basic
syntax for a propagation rule is:

head ==> guard | body

Similarly, for a simplification rule:

head <=> guard | body

And finally a simpagation rule looks like:

kept \ removed <=> guard | body

An empty guard (true) can be omitted, together with the ‘|’ symbol. Heads
can never be empty. Optionally, you can name each rule by prepending it with a
unique identifier followed by an ‘@’ symbol. This name has no semantical meaning.
It functions as mainly documentation, but will also make compiler output – e.g.
errors and warnings – and tracing more legible.

Separators

All parts of JCHR rules are essentially conjunctions. In the next sections we will
see which types of conjuncts are supported and allowed in each part of a rule. Since
this is a port of CHR to Java, conjuncts are separated by double ampersands (‘&&’).
To indicate the end of a rule, another typical Java separator is used: the semicolon
(‘;’). To accommodate easy porting from existing systems, more Prolog-like syntax
is also supported, meaning colons (‘,’) and a dot (‘.’) respectively.

Future thoughts

• The dot at the end of a rule is somewhat troublesome, because it is used in the Java
language for other purposes. One problem in the current version is e.g. that you
cannot end a rule with a number followed by a dot, because this is interpreted as
part of the number by the parser.

• There are some other syntactical variants that are worth considering. For example,
we could use a more Java-like syntax for guards:

head ==> if (guard) body

17

2.8.3 Conjuncts and arguments

Regarding the conjuncts and arguments that are allowed, the K.U.Leuven JCHR
System tries to remain as close as possible to the host language Java (this is not
the case in other embeddings of CHR in Java [AKSS01, Wol01, VA06]). We know
already from Section 2.8.1 that the variables used in K.U.Leuven JCHR are in the
first place the same as the variables we know from Java, i.e. not some form of (typed)
logical variables. In the remainder of this section, you will see that we followed a
similar philosophy for the other expressions in the JCHR language.

Conjuncts

Constraints The first type of conjuncts is of course the constraint. As always
in a CHR system, there are two kinds of constraints: user-defined constraints, de-
clared by the enclosing JCHR handler, and built-in constraints, solved by a built-in
constraint solver, orthogonal to the JCHR core system.

User-defined constraints are written using a familiar prefix notation, namely

constraint (arg1, ..., argn)

where constraint is a n -ary user-defined constraint, declared by the enclosing
handler (cf. Section 2.6.1). Binary constraints for which an infix identifier is declared
(as explained in Section 2.6.1), can however also be written using an infix notation.
For nullary constraints (also called flag constraints), the ‘()’ can be omitted . v1.4.0

Built-in constraints are syntactically completely analogous to user-defined
constraints (cf. supra). They are solved by one of the declared or implicitly known
built-in constraint solvers. Binary built-in constraints can also have infix identifiers.
All details can be found in Section 4. There are also two special trivial built-in
constraints that can be used:

• true: constraint that always succeeds

• false or fail: (nullary) constraint that always fail. fail also has a variant
that takes as single argument a String, which can be used to indicate the
reason of failure. v1.5.0

These built-ins are mainly intended to be used in bodies: they can be used in guards
as well, but in general one omits trivial guards.

Name clashes If a built-in constraint has the same identifier (prefix or infix)
and arity as a user-defined constraint, then the user-defined constraint will get
precedence over the built-in one8. We saw however in Section 2.6.2 how you can
assign an identifier to a built-in solver. If a built-in constraint’s name clashes with
that of a user-defined constraint, you can precede its identifier with that of its built-
in constraint solver: for prefix notation this becomes solver.constraint (...); for
infix notation ... ´solver.infixid ´ You can also use the special keyword
$builtin, instead of a solver identifier, to indicate that the intended constraint
is built-in and not user-defined (the compiler will then try to infer the built-in
constraint solver). Of course, solver identifiers can also be used to disambiguate
between two or more built-in constraints (declared by different constraint solvers)
that have the same identifier and arity.

8 Name clashes are in fact only a real problem if both constraints have the same or similar
parameter types: the compiler will try to disambiguate based on the typing information about the
arguments.

18

Host language statements A second type of conjuncts are host language state-
ments. This is the same for all CHR systems. The main difference here is that
Java statements are further away from constraints than e.g. Prolog statements. In
principle, any Java statement could be a valid conjunct, but the current parser
and compiler only support the following subset: statements that can be used as a
conjunct are:

• method invocations

• constructor invocations v1.4.0

• field accesses (boolean fields in guards only)

• variables (boolean variables in guards only) v1.4.0

Arguments

The following expressions can currently be used as argument for a constraint,
method invocation or constructor invocation:

• method invocations (if they do not have void as return-type)

• field accesses

• constructor invocations

• variables

• numeric literals (i.e. integer or floating point literals, completely compliant
with the Java Language Specification [GJSB04])

• character literals (a character or an escape sequence, enclosed in ASCII single
quotes, as defined in [GJSB04].)

• string literals (zero or more characters enclosed in double quotes: again, com-
pletely analogous to [GJSB04])

• boolean literals (true or false)

• the null literal

For character and string literals identical escape sequences as defined in [GJSB04]
are supported.

Implicit arguments An implicit argument is that part of a method invocation
or field access preceding the final dot. Are supported as implicit argument:

• field accesses

• class names (i.e. for static members)

• variables

Note that e.g. method invocations cannot yet be used as an implicit argument for
e.g. another method invocation.

Future thoughts
The supported Java expressions are currently quite limited. Though all most commonly
used expressions are already possible, it would be nice to really allow arbitrary Java expres-
sions and statements in rule definitions. Parsing and modelling the entire Java language
is however not an easy task.

19

2.8.4 Heads

A head is a non-empty conjunction of user-defined constraints. In a simpagation
rule the head is split in two non-empty parts by a backslash. A conjunct of a head
is also called an occurrence of that particular user-defined constraint.

Implicit variable declarations
v1.4.0

If you use a variable in the head of rule, you do not have to declare it explicitly like
you have to do with local variables (cf. Section 2.8.1). The reason is that the com-
piler can infer the variable type from the type information given in the constraint
declarations (Section 2.6.1). If you use the same variable more than once in the
head (cf. also below under implicit guards), each of these variable occurrences has to
have the same type. If used in different rules on the other hand, the same variable
identifier can be used to identify variables that are typed differently.

Future thoughts
We could relax the above restriction in the future, but it is doubtful this would be worth
the effort. Using the same identifier in a single rule for differently typed variables (or one
multi-typed variable) would mean it is no longer always clear in the guard and the body
which type a variable has exactly, which would lead to more messy ambiguities. It is also
hardly ever needed, and you can always use two different variable names and an explicit
equality guard in the exceptional cases where it is needed.
One idea would to allow different types, but only if the variables are not used in any guard
or the body. This way only an implicit equality guard would have to be created between
two differently typed variables, which is no problem.

As we said before, if a variable is declared implicitly in the head of a rule, it
will hide a local variable if it has the same identifier (i.e. they are allowed to have
different types). If a variables has the same identifier as an (imported) reference
type, it will hide that type name. A warning is generated by the compiler in that
case, because this leads to certain pathological cases like:

constraint c(Integer);
...
c(String) ==> foo(String.valueOf(13)).

In the above example, the semantics dictates that String in the body is a
variable of type Integer, and thus that String.valueOf(13) is of type Integer,
whereas most probably the user intended it to be of type String, the return type
of the static valueOf method of class String.

Also, (statically imported) fields whose name start with an upper case letter
could be mistaken for an implicit declaration of a variable if used as a top-level
argument in a head. The Java code conventions [Suna, GJSB04] however state that
only constants should start with an upper case (in fact: constants should have all
upper case names). Therefore the compiler will only consider a capitalized name
an implicit variable declaration if it is not a constant (i.e. annotated with final)
field. Using non-final capitalized fields in the head will require the explicit use
of the implicit argument (so you cannot profit from static imports there), but this
should never occur if the naming conventions are followed. Note that this semantics
directly allows the use of statically imported enum values in the head of rules, since,
under the hood, these are implemented in Java using static final fields.

We will see below that besides variables, other (host language) expressions can be
used as an argument in rule heads. Only top-level uses of variables count as implicit
variable declarations (other uses will, as seen below, result in implicit guards). If
you never use a variable as a top-level argument, and you use it in elsewhere in a

20

head or a guard, a compiler error will be raised as the variable is not declared. For
use of variables in bodies only (cf. infra), we know already you can use local variable
declarations (Section 2.8.1).

Future thoughts
There are some issues with the current implementation if you use a variable for the first
time in a non-variable expression. For example, the following rule uses the variable X two
times before it is used as a top-level argument:

a(X.increment()), b(Math.abs(X), X) <=> true.

Note that if X would not have been used top-level in the third argument, the rule would
have been invalid. To overcome this small implementation glitch, you can:

• Rearrange the heads such that one of the top-level uses becomes the first use. This
might not be possible if the rule in question is a simpagation rule or, as in our
example, if non-top-level variable uses occur within the same constraint as its top-
level occurrence.

• Write the implicit guards explicitly: i.e. introduce a new variable and move the
non-variable expression to an explicit equality guard. For example, a combination
of the first two techniques can be used to rewrite the above rule to:

b(Y, X), a(X.increment()) <=> Y == Math.abs(X) | true.

• A third, pragmatic ad-hoc solution has been added as well, that does not require
you to change your rules: you can declare the variable using a pragma var decla-
ration directly preceding the rule. These declarations are similar to local variable
declarations, but are only valid in the rule directly after it (two or more pragma var

declarations can be used for the same rule):

pragma_var MyFabulousType X;

a(X.increment()), b(Math.abs(X), X) <=> true.

This type of declaration will be, first deprecated and ignored, and later discontinued
as soon as the implementation deals with non-top-level variables properly. You can
then simply delete these temporary declarations.

Implicit guards

Using the same variable more than once as an argument results in what is called
an implicit guard. For example:

c(X, X), d(Y), c(X, Y) ==> ...

will be rewritten internally by the compiler to a form similar to9:

c(X, X1), d(Y), c(X2, Y1) ==> X == X1 && X == X2 && Y == Y1 | ...

This means of course that, if you use variables more than once in a head, there
must exist a suited built-in to test the equality of two variables of their type. For
more information on equality built-in constraints, we refer to Section 4.4.

You can also use non-variables as argument to a constraint in a head (cf. Sec-
tion 2.8.3 for supported arguments). This also results in an implicit guard. For
example:

c(0, Integer.parseInt(X)) ==> ...

will be rewritten to:
9 The concrete normal form actually depends on the occurrence under consideration, and on

the join ordering chosen.

21

c(X0, X1) ==> X0 == 0 && X1 == Integer.parseInt(X) | ...

A non-variable expression occurring in a head does not have to be of the exact same
type as the formal type at its argument position; there does however have to exist a
built-in equality constraint capable of testing whether the expression used is equal
to an expression of that formal type (cf. Section 4.4).

Implicit guards are nothing more than syntactic sugar, that makes it easier do
limit the constraints that matched by a rule.

Anonymous variables
v1.3.0

If you use a variable as an argument in the head of a rule, but never again in the
body or an (implicit or explicit) guard, a warning will be raised by the compiler, v1.4.0
because this could indicate a programming mistake. This type of unused variables
is commonly called singleton variables. To prevent these warnings from being gen-
erated, you can use anonymous variables.

An anonymous variable is a variable whose name starts with an underscore (‘ ’),
and can only be used in the head of a rule. There are in fact two kinds of anonymous
variables:

1. The nameless anonymous variable, whose identifier is simply . This identifier
can only be used as a top-level argument in the head. Using it more than
once will never result in an implicit guard. Its different occurrences also do
not have to be of the same type (each occurrence is considered a different
variable).

2. Named anonymous variables – note the contradiction in terminis! – have
identifiers that start with but are not equal an underscore. The first non-
underscore character can be any character valid for an identifier (cf. Sec-
tion 2.1), i.e. it is not limited to a capital letter. This type of anonymous
variables can be used to better document your code (when compared to the
nameless one), whilst still preventing obsolete warnings. Also, using the same
named anonymous variable more than once will result in an implicit guard. v1.4.0
Consequently, each occurrence of an anonymous variable in the same rule will
be required to have the same type.

It is important not to forget that anonymous variables, also the named ones,
can only be used as top-level arguments of a rule head (i.e. not even in an implicit
guard).

2.8.5 Guards

A guard can only contain:

1. Built-in constraints that can be asked. For more information on ask and tell
versions of built-in constraints see Section 4.1.

2. Host language expressions of type boolean or Boolean, or that can be coerced
to a boolean type. Cf. Section 2.8.3 for more information on supported Java
expressions.

In a guard only variables are allowed that have been used in the head of its rule.

Future thoughts
There is no valid reason for this limitation: it is just not implemented yet. This should be
dealt with in one of the next versions.

22

2.8.6 Bodies

The body of a rule can contain built-in constraints that can be told (cf. Section 4.1),
user-defined constraints, and any Java statement supported (Section 2.8.3). In a
body local variables can be used – that is, variables that do not yet occur in the
head if the rule – provided they are declared in advance by a local declaration, as
seen in Section 2.8.1.

Tip: Only user-defined constraints declared in the enclosing handler are consid-
ered user-defined. It is however also possible treat constraints of other K.U.Leuven
JCHR handlers as built-in tell constraints (i.e. use them in the body of a rule) if v1.2.0
you declare their handler as a built-in constraint solver (cf. Section 4.5).

2.8.7 Pragmas

Rules can be annotated with pragmas. In general, a pragma is defined in computer
science as:

a compiler directive embedded in source code by programmers, commu-
nicating additional “pragmatic” information (on control, optimizations,
. . .)

A comma-separated list of pragmas can be added at the end of a rule, preceded by
the pragma keyword. Some pragmas can also be declared in-head (cf. infra). v1.4.0

For use in pragmas, occurrences can be given an identifier by adding a ‘#’ fol-
lowed by a unique identifier directly after it.

pragma passive 10 This is probably the best-know pragma for CHR, but nonethe-
less best left to more advanced users. If you declare an occurrence passive, no code
will be generated for that particular occurrence. This means that if a constraint
becomes active, it will not see that occurrence, it is passive in that occurrence. In
other words: that occurrence will only be used to match constraints, never to seed
a search for partner constraints. If you are familiar with the working of the Rete al-
gorithm [For82], this is similar to a join-node that cannot be right-activated (CHR
does not keep a beta-network though, as it uses an algorithm closer to LEAPS
[MBLG90]). This changes the behavior of the CHR system, because normally, a
rule can be entered starting from each occurrence. Usually this pragma will improve
the efficiency of the constraint handler, but care has to be taken in order not to lose
completeness.

For example, in the handler leq (listed on page 12), any pair of constraints, say
A <= B, B <= A, that matches the head X <= Y, Y <= X of the antisymmetry
rule, will also match it when the constraints are exchanged, B <= A, A <= B.
Therefore it is enough if a currently active constraint enters this rule in the first head
only, the second head can be declared to be passive. Similarly for the idempotence
rule. For the latter rule, it is more efficient to declare the first head passive, so
that the currently active constraint will be removed when the rule fires (instead of
removing the older constraint and redoing all the propagation with the currently
active constraint).

Declaring the first head of rule transitivity passive would however change the
behavior of the handler. It will propagate less depending on the order in which the
constraints arrive (we use a Prolog-like notation here to illustrate):

| ?- X =< Y, Y =< Z.
X =< Y,
Y =< Z,

10 Parts of the explanation in this paragraph is adapted from [H+06].

23

import runtime.*;

handler leq<T> {
solver EqualitySolver<T>;

constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true.
antisymmetry @ X =< Y, Y =< X # Id <=> X = Y pragma passive(Id).
idempotence @ X =< Y # Id \ X =< Y <=> true pragma passive(Id).
transitivity @ X =< Y , Y =< Z ==> X =< Z.

}
}

Listing 2: The leq handler with two, correct passive annotations.

X =< Z

| ?- Y =< Z, X =< Y.
Y =< Z,
X =< Y

| ?- Y =< Z, X =< Y, Z =< X.
Y = X,
Z = X

The last query shows that the handler would still be complete in the sense that
all circular chains of leq-relations are collapsed into equalities. Nonetheless, adding
the latter passive declaration is considered wrong: a pragma passive should only be
used to help the compiler detect true passive occurrences – the code generated for
these occurrences would be dead code anyway – and never to alter the behavior of
a handler! In other words: it should be used as a optimization pragma, not as a
control pragma.

Future thoughts
We say “help the compiler detect passive occurrences”, and this is in fact still often the
case in JCHR. The current version of the compiler does some symmetry analysis to detect
passive occurrences, and will already detect several frequently occurring types, but when
compared to the K.U.Leuven CHR System [SSD05a, SSD05b], the analysis is still quite
näıve.

Asides from the notation illustrated in Listing 2 (the notation used by most
other CHR systems), the K.U.Leuven JCHR System also offers following, more
convenient variants for this popular pragma:

1. Multiple occurrences can be declared passive at once by using a comma- v1.3.1
separated list of identifiers, e.g. pragma passive(X, Y). The more cumber-
some notation you have to use in other systems, pragma passive(X), passive(Y),
is also supported.

2. Occurrences can be declared passive directly in the head of a rule by adding v1.4.0
‘# passive’. This notation, which we refer to as in-head, is also adopted by
the K.U.Leuven CHR System.

3. Because passive will probably remain the most popular pragma, it can be v1.4.0

24

written by simply adding a ‘#’ after an occurrence (i.e. without an identifier
or the passive keyword). This is indeed a very practical shorthand notation,
which unfortunately, due to technicalities, was not possible to port to our
Prolog CHR system.

25

Chapter 3

Types

Because the K.U.Leuven JCHR language is statically typed, types play an impor-
tant role. A goal of the system has always been to make the integration of both
languages, Java and CHR, as tight as possible. Previous CHR implementations
in Java used either a form of typed logical variables [Sch99, AKSS01], or terms
[Wol01], both syntactical entities well known from logical programming languages
like Prolog. We considered this approach to be too limiting and counterintuitive
for Java programmers (logical variables and terms should be possible, but the pro-
grammer should not be forced to use them; cf. also Section 3.2.4). We did not want
to implement a Prolog-like CHR in Java, but rather a well embedded implementa-
tion of CHR for Java. Therefore, the variables you use in JCHR are genuine Java
variables, and the typing rules resemble those known from Java.

To prevent the syntax from becoming too verbose, and to ease the porting from
existing (non-Java) CHR systems, we did however introduce a form of type coercion.
To be able to insert correct coercion code, the compiler needs some extra informa-
tion. This knowledge is built-in for many common Java types (cf. Section 3.1), and
the user can easily define and use its own variable types by annotating in with the
necessary meta-data (more details follow in Section 3.2.

3.1 Built-in Types

The compiler implicitly knows all information it needs for most frequently used Java
types:

1. The eight primitive types: boolean, byte, short, int, char, long, float and
double.

2. The eight so-called wrapper types of the java.lang package: Boolean, Byte,
Short, Integer, Character, Long, Float and Double.

3. java.math.BigInteger and java.math.BigDecimal

4. java.lang.String

Note that these types are all immutable values. We will see in Section 3.2.3 why
this is significant.

Coercion

Coercion for the first two classes of built-in types boils down to the new auto-
boxing/unboxing feature introduced in Java 5. It automates the cumbersome

26

switching between primitive types and their corresponding wrapper types. The
result of all this magic is that you can largely ignore the distinction between e.g.
int and Integer, with a few caveats. An Integer expression can have a null value.
If null is coerced to int, a NullPointerException will be thrown. Secondly, there
are some minor performance costs associated with boxing and unboxing.

Values of type BigInteger and BigDecimal are coerced to any primitive type,
or any of the wrapper types.

3.2 User-defined Types

Asides from the built-in types listed in the previous section, the user can also de-
fine its own Java types and use them in the K.U.Leuven JCHR System. There
are however some limitations. To be able to perform e.g. coercion, the compiler
will need some extra information regarding these types. This is explained in Sec-
tion 3.2.1. A more important problem (though it is a very convenient feature,
coercion is mere syntactical sugar) is the so-called modified problem, described in
detail in Section 3.2.2. In the section thereafter we sketch our proposed solution. We
conclude with an example implementation of a user-defined type of logical variables
(Section 3.2.4).

3.2.1 Type information

Coercion

Declaration/initialization

3.2.2 The modified problem

Important for an embedding of CHR in any host environment is the reactivation of
suspended constraints, as soon as some guards (may) succeed. Crucial for efficiency,
is that unnecessary reactivations occur as little as possible. However, we consider it
important for an integration of CHR in an object oriented language like Java to allow
so-called behavioral matches [BV94] in guards, besides the structural matches you
encounter in most other CHR systems. Because objects are encapsulated entities,
this leads to what in the literature is referred to as the modified problem [eoo94,
Pac95, dFFR00]: how does the rule engine know when the state of an object has
changed? Is this state change relevant? Which guards have to be re-evaluated?
Things become even more involved if the inspector called in the guard depends on
the state of multiple object. The latter is sometimes referred to as the transitive
modification problem [dFFR00].

3.2.3 Observing modifications

The current solution we adopt is mainly based on the well-known observer pattern
[GHJV95]. If you want to use a self-defined object type as an argument to JCHR
constraints, this type has to be observable, i.e. it has to implement certain interfaces.
This is explained in detail further in this section. There are two exceptions though:
you do not have to implement the interfaces if your objects are immutable (cf.
next paragraph), or if you use type modifiers, promising not to alter their states
significantly (cf. Section 3.2.5).

Fixed types

If your objects are values that cannot be modified – i.e. there are no mutator
methods that can change the state, at least not in a way that can ever influence the

27

result of some inspector methods – implementing these interfaces is not necessary.
Indeed, the modified problem does not apply here as your objects can never be
modified! We call such types immutable types, value types, or also fixed types.
The Java types listed in Section 3.1, are all values: this is also implicitly know
by the compiler. If you yourself have defined a reference type that you know is
immutable, you can declare it to be so simply by annotating it with the annotation
annotations.JCHR Fixed.

Observable user-defined types

runtime.Observable As we said before, the modified problem is solved by requir-
ing all (modifiable) types to implement the runtime.Observable interface. This
is an application of the commonly-used observer design patter [GHJV95], where
runtime.Observable plays the role of observable, runtime.Constraint of observer
and the notify method is called reactivate. Constraints will register themselves
as observers through the implemented method addConstraintObserver, and each
time its state changes significantly, it is the responsibility of the observable to notify
(reactivate) the observing constraints by calling their reactivate method.

Tip: If you want to use certain types, but you are not able to alter their source
code, you can always try the decorator pattern [GHJV95] to create observable
proxies for the objects involved that, after forwarding the mutator calls to the
decorated object, reactivates the observing constraints.

Tip: You can use the runtime.list.ConstraintLinkedList to implement
the list of observing constraints, certainly if you want the lists to be mergeable.
An example usage can be found in runtime.Logical, explained further in Sec-
tion 3.2.4.

runtime.hash.HashObservable Executing CHR is essentially performing many
multi-way joins between constraints. For performance reasons the compiler will
try to insert hash indices for partner constraint lookups. However, if your type
is mutable, it is very well possible that also your hash value will change during
the execution of a JCHR based program. To be able to keep the hash indices
up-to-date, their keys will observe the objects contained in them, again using the
observer design pattern. All mutable types have to implement the observer interface
runtime.hash.HashObservable, through which keys will register themselves. It is
the responsibility of an hash-observed object to notify all its observers using their
rehash method each time its hash value has changed. An example implementation
can be found in Section 3.2.4.

Tip: The tips given for runtime.Observable also apply here, except that
this time runtime.hash.MutableStorageKeySet has been written to help with the
implementation of the interface.

28

Future thoughts
The solution we adapt currently is still very ad-hoc:

• It is too coarse-grained: it would be better to supply more information on the type
of event that caused a constraint to be reactivated, and use this to deduce which
guards have to re-evaluated. This would be something like the wake conditions
introduced in [DSdlBH03].

• Currently all non-fixed types have to implement, besides the necessary Observable

interface, also HashObservable. This is however only necessary for efficiency: all
the compiler should do then is not to use hash-indices . . .

• Implementing the interface(s) requires a certain amount of work by the programmer.
One idea we have to eliminate this cumbersome overhead would be the use of aspect
orientation.

• We should allow java beans [Sun06a] with bound (and/or constrained) properties
[Sun06b], certainly for those people who already have such bean classes in their
existing applications.

3.2.4 An example: runtime.Logical

3.2.5 Type modifiers
v1.1.0

There are several places in a JCHR handler where type declarations occur. The
ones we are interested here are:

1. User-defined constraint declarations, explained in Section 2.6.1, contain type
information for their arguments.

2. Variable declarations in the rules block (cf. Section 2.8.1).

From the preceding subsections we know that the JCHR runtime system needs
to be informed about changes to the objects that are used in the arguments of the
constraints it handles. We saw how the observer pattern [GHJV95] accomplishes
this. But you might not want to implement the interfaces needed for this, if:

• you do not intend to modify the state of the objects, at least not in such a way
that it is important for the runtime to know (i.e. it never affects the outcome
of a guard)

• you do not want the rules to react to changes to object states for some reason

• the objects you are using are values, but you cannot add the @\ac{JCHR}_Fixed
annotation (cf. previous section).

Therefore, you can add the type modifier ‘+’ in front of the type to indicate
that a certain argument of a user-defined constraint can be considered fixed by
the compiler. Adding the ‘+’ modifier to a type that is known to be a value –
either because its declaration is annotated with @\ac{JCHR}_Fixed, as explained
in Section 3.2.3, or because that knowledge is built into the compiler, as seen in
Section 3.1 – is allowed, but of course not necessary.

Future thoughts
We could have the compiler detect that a certain argument is never used in a guard,
because then it does not need to worry about the fact that its state might change. If this
is the case, it could simply accept the typing without the need for a modifier.

Tip: Sometimes, if you know it will never change significantly, it is still inter-
esting to add the modifier even to a type that is observable by the runtime: this
can improve performance, because then observers will not be added and removed
to the arguments.

29

Future thoughts
At the moment the only type modifier supported is ‘+’. If deemed interesting, future
versions might incorporate other modifiers know from e.g. the K.U.Leuven CHR System,
like ‘-’ and ‘?’.

Be careful to use modifiers only if it is correct to do so: if the state of one of the
constraint arguments does change, the runtime will have no knowledge about this
event, and certain rules you might intended to fire, will not trigger.

30

Chapter 4

Built-in Constraints and
Solvers

In Java CHR systems like JaCK [AKSS01, Sch99] and DJCHR [Wol01], there is
only one real built-in constraint present (resp. equality of typed logical variables
and equality of terms), very strongly coupled with the rest of the code. The same is
in fact valid for pure Prolog: equality of terms can be seen as a built-in constraint,
solved by the unification algorithm implemented by the Prolog host language. In-
spired by the HAL CHR system [dlBDMS02, HdlBSD05], and the related paper
[DSdlBH03], the K.U.Leuven JCHR System is designed to leave the choice of built-
in constraints and their corresponding built-in constraint solvers as free as possible.
It is relatively easy to add new built-in constraint solving capabilities, to switch to
different implementations, to experiment with different variations, etc.

From Section 2.6.2 we already know how to declare the built-in solvers used
by a particular handler. These declarations alone do not suffice, the compiler still
needs some more information to decide which built-in solver to use for which built-
in constraint, and which code to generate for each built-in constraint call. Our
approach here is analogous to the one taken in Sections 3.1 and 3.2: the compiler
knows the necessary information about all frequently used Java “constraints” and
“solvers” (Section 4.2), and the user can define its own built-in constraint solvers
using annotated meta-data (Section 4.3). Finally, Section 4.5 shows how JCHR
handlers can be used as built-in solver to other JCHR handlers. But first, we need v1.2.0
to tell something more about the two types of built-in constraints the K.U.Leuven
JCHR System supports, namely ask constraints and tell constraints.

4.1 Ask versus Tell

In general, we distinguish three forms of interaction between a CHR system and
built-in constraint solvers (see also [DSdlBH03]):

1. CHR adds new constraints to the built-in constraint solvers by firing rules:
it tells the underlying solver certain constraints hold. These constraints are
called tell constraints. All constraints in the body of a JCHR rule have to be
tell constraints.

2. If we use constraints in a guard, we are typically asking the built-in solver
whether or not certain constraints hold (i.e. logically entailed by the built-
in constraint store). These constraints are called ask constraints. Although
not part of any CHR specification [Frü98], some CHR systems also allow tell

31

Primitive typesa

Prefix Infix
eq = or ==
neq !=

geq >=
gt >
leq <= or =<
lt <

Reference typesb

Prefix Infix
eq = or ==
neq !=
ref eq ===
ref neq !==

Comparablesc

Prefix Infix

geq >=
gt >
leq <= or =<
lt <

Table 4.1: The built-in built-in ask constraints. They can all be written both prefix
and infix.

a For boolean primitives, only equality and inequality can be asked.
b Object equality (eq and neq) is tested using the Object.equals method. For enum types,

reference comparison (==) is always used. If you want to use reference comparison for other
objects, you can use the ref eq and ref neq constraints. As in Java, reference (dis)equality can
only be tested if the static types of the operands are comparable (possibly after coercion). You
can for example not write X === Y if X is a String and Y is an Integer.

c “Comparables” are all types that (possibly after coercion) can be assigned to
java.lang.Comparable<T>, numeric wrapper classes not included (these are first coerced to their
corresponding primitive types). Commonly used Comparables include String, enum types, Boolean,
BigInteger, Date, etc.

constraints in guards. The K.U.Leuven JCHR System does not: all constraints
in guards have to be ask constraints.

3. The final form of interaction is what we already encountered in Section 3.2.3:
here it is the built-in constraint solver that takes the initiative, notifying the
CHR system when some (and also as much as possible which) suspended CHR
constraints should be reactivated. This is done when the built-in constraint
store has changed in such a way that previously failed ask constraints might
now be entailed. As we know from Section 3.2.3, this is more an interaction
between the CHR system and the variables of the built-in constraint system.

It are the first two types of interaction we are interested in in the remainder of
this chapter. We will see that a built-in constraint in JCHR can have either an ask
version, a tell version, or both.

Example 4.1. Pure Prolog only has one built-in constraint solver, called the Her-
brand solver, with as only tell constraint =/2, and corresponding ask constraint
==/2. Even though many will use =/2 in guards, behind the scenes, all Prolog CHR
systems we know of (more or less) translate these guards to ==/2.

4.2 Built-in built-in constraints

Table 4.1 shows all built-in built-in ask constraints known by the K.U.Leuven JCHR
compiler. These constraints can only be asked, never told. The system also knows
assignment, which, in a way, can be seen as a special tell constraint. This “con-
straint” can only be written infix, using the familiar ‘=’ symbol, and its first argu-
ment has to be a variable. Its effect is only local (within a body): it is completely
analogous to the assignment we know from Java. Although not enforced, an assign-
ment is typically used to assign a value to a local variable.

Tip: For Java programmers: keep in mind that == (!=), does not test reference v1.5.0
equality (disequality) of objects like you are used from Java. To test reference

32

package runtime;

import annotations.*;

@JCHR_Constraints({
@JCHR_Constraint(

identifier = "eq",
arity = 2,
ask_infix = {EQi, EQi2},
tell_infix = EQi

)
})
public interface EqualitySolver<T> {

@JCHR_Tells("eq")
public void tellEqual(Logical<T> X, T val);
@JCHR_Tells("eq")
public void tellEqual(T val, Logical<T> X);
@JCHR_Tells("eq")
public void tellEqual(Logical<T> X, Logical<T> Y);

@JCHR_Asks("eq")
public boolean askEqual(Logical<T> X, T val);
@JCHR_Asks("eq")
public boolean askEqual(T val, Logical<T> X);
@JCHR_Asks("eq")
public boolean askEqual(Logical<T> X, Logical<T> Y);

}

Listing 3: An annotated built-in solver interface (EqualitySolver<T>)

equality you have to append an extra = to the operators. This is done for reasons
of symmetry with primitive types (cf. Table 4.1), and with Prolog built-in ask
constraints (cf. Examples 4.1). It also turns out this is very close to a proposal to
extend the Java language with similar syntactic sugar [Smi01].

4.3 User-defined built-in constraints

The approach chosen is similar to the one we took for user-defined types in Sec-
tion 3.2: the user only has to declare which built-in constraint solvers are used in a
certain handler (Section 2.6.2), and the compiler will use reflection on the annotated
solver types to acquire all the necessary information. To be precise: the compiler
needs to know which constraints the solver defines, and which methods it has to
use to ask or tell these constraints.

Listing 3 shows an example of an annotated solver interface that defines one con-
straint. The annotations can also be put on a class declaration, rather than on an
interface declaration. The only advantage of using an interface is, as always, imple-
mentation independence. A @JCHR Constraints annotation is a comma-separated
list of @JCHR Constraints, each declaring one, uniquely identified, constraint. A
single solver class can easily define multiple constraints. Next to the identifier
field, there is one other mandatory field, arity. For binary constraints, sev-
eral other, optional fields are present, which we discuss in Section 4.3.1. Each
method that should be used to tell (ask) one of the constraints is annotated with a

33

@JCHR Tells (@JCHR Asks) annotation, indicicating which of the solver’s constraints
it tells (asks).

Using this annotated meta-information together with the Java reflection facility,
the K.U.Leuven JCHR compiler is capable of generating the correct method calls
when encountering built-in constraints. You should never use the method calls
directly. This is in line with the philosophy of declarative (constraint) programming.
Not only does using the constraints improve ease of use and readability, it also makes
it easier to switch to other solver implementations. Also, certain optimizations only
work if problems are stated in terms of constraints (rather then host language
statements). It would be possible to detect annotations on the methods that are
used, but we have decided not to do so.

We already saw what to do if there are name clashes between constraints (be-
tween two built-in constraints, or between a built-in and a user-defined constraint)
on page 18. Note that this will only occur if not only the constraint identifiers and
arity are the same, but also their argument types. Most of the time, reflection on
type information will also allow disambiguation.

4.3.1 Binary constraints

Binary constraints are in two ways special: firstly, they can, as is the case with bi-
nary user-defined constraints, be assigned one or more infix identifiers; secondly, the
compiler can be provided with extra metadata on the properties of the constraint. v1.5.0

Declaration of infix identifiers
v1.5.0

The declaration of infix identifiers is, analogous to what we saw in Section 2.6.1
for user-defined constraint declarations, optional, with analogous restrictions on
the infix identifiers as well. The only exception is that the surrounding quotes are
not allowed in the declaration1. If you use the identifier in a handler however,
the accents are again mandatory (except for the ten built-in infix identifiers, cf.
Section 2.6.1).

You can declare infix identifiers using different levels of granularity. You can:

• Declare one or more infix identifier for each constraint using the annotation’s
infix field, who’s value is an array of Strings. Singleton arrays can be
written without the enclosing curly braces. This (these) infix identifier(s) can
then be used both to tell and to ask the built-in constraint.

• Declare the infix identifiers used to aks and tell the constraint separately.
This is illustrated in Listing 3. For this, the JCHR Constraint annotation has
two fields (both String arrays) ask infix and tell infix. You have to use
either infix, or these two fields, or none at all. You can set a field to the
empty array if you want (e.g. when infix identifiers should only be used to ask
a particular constraint).

• You can even use different infix identifiers for each seperate method: the
@JCHR Asks and @JCHR Tells annotations also include a field infix. The
identifier(s) given here (or the empty array) override the default value given in
the corresponding @JCHR Constraint annotation. If you use this feature, the
compact notation of the constraint identifier field – e.g. @JCHR Asks("eq"),

1 Also, if you would want to escape characters in the identifier, you will have to escape both
the escaped character and the backslash. So, if you want to be able to use an infix identifier ’\”my
silly infix\”’, you have to declare it as ”\\\”my silly infix\\\””

34

which is actually short for @JCHR Asks(constraint="eq")2 – can no longer
be used, so it has to be written in full: e.g. @JCHR Asks(constraint="eq",
infix={"=", "=="}).

Extra metadata
v1.5.0

To help the K.U.Leuven JCHR compiler understand the properties of binary con-
straints, you should provide extra metadata. Below is a list of properties, and
each of these properties corresponds to a field of the @JCHR Constraint annota-
tion. These fields can each have three values: YES (the constraint is known to
have this property), NO (the constraint does not have this property), or DEFAULT (in
which case the actual value is deduced from the prefix and infix identifiers of the
constraint). Examples follow shortly, but first the definition of the properties. The
items of this list are read as: a binary constraint c is . . . , if and only if . . . holds.

symmetric
∀X, Y : c(X, Y) ⇒ c(Y,X)

asymmetric
∀X, Y : c(X, Y) ⇒ ¬c(Y, X)

antisymmetric
∀X, Y : c(X, Y) ∧ c(Y,X) ⇒ eq(X, Y)

reflexive
∀X, Y : eq(X, Y) ⇒ c(X, Y)

irreflexive
∀X, Y : eq(X, Y) ⇒ ¬c(X, Y)

coreflexive
∀X, Y : c(X, Y) ⇒ eq(X, Y)

total
∀X, Y : c(X, Y) ∨ c(Y,X)

transitive
∀X, Y, Z : c(X, Y) ∧ c(Y, Z) ⇒ c(X, Z)

trichotomous 3

∀X, Y : c(X, Y)⊕ c(X, Y)⊕ eq(X, Y)

Notice the special status of the equality constraint eq in the above definitions.
We say more about this special built-in constraint in Section 4.4. The following
example should help make clear the difference between equality constraints, and
coreflexive constraints:

Example 4.2. Reference comparison of objects in Java should, in general, not
be considered an equality constraint. It is on the other hand often safe to regard
comparing objects using the Object.equals method as an equality constraint (cf.
Section 4.4). It is not because two objects are distinct, in the sense that they have
different object identities, they are not “equal”. The following snippet of Java code
should clarify this:

2 Actually, due to restrictions of the Java language, it is short for @JCHR Asks(value="eq"),
but this hidden field is in fact not intended to be used in full. We cannot prohibit it, but we advice
to always use the constraint field.

3 We let ⊕ denote exclusive disjunction, i.e. (P ⊕Q) ⇔ ((P ∨Q) ∧ ¬(P ∧Q))

35

Integer oneFive = new Integer(5);
Integer otherFive = new Integer(5);

if (oneFive != otherFive)
System.out.println("They do not reference the same object, ...";

if (oneFive.equals(otherFive))
System.out.println("... but they are equal nontheless!");

Reference identity does however imply equality, or, in other words, reference com-
parison is a coreflexive constraint. Or to be more precise: it is coreflexive, as long
as the implementor of e.g. the equals method obeys its general contract specified in
the Java API. But this is an assumption we make, as is specified in Section 4.4.

It is, as shown in Listing 3, for most common types of constraints not needed
to specify all these properties, as long as you obey the implicit naming conventions
for their identifiers. The default value of the fields is – prepare yourself for a big
surprise – DEFAULT. This means the actual value will be derived from the prefix
or infix identifier of the constraint. We will clarify this with one example, but
similar, equally intuitive rules apply for all the above properties, and for all the
following constraint identifiers: prefix: eq, neq, leq, lt, geq, gt; and infix: =,
==, ===, !=, !==, <=, =<, >=, <, > (note that these are the ten built-in infix
identifiers seen on page 15). All concrete rules are also specified in the API of
compiler.CHRIntermediateForm.constraints.bi.BuiltInConstraint.

Example 4.3. To determine whether a constraint is symmetric by DEFAULT, the
following rules are applied (in the enumerated order):

1. If the prefix identifier of the constraint is either of the following values, the
default value is true: eq, leq, geq.

2. If the infix identifier of the constraint is either of the following values, the
default value is true: =, ==, <=, =<, >= for all other constraints the default
value is false.

4.3.2 java.util.Comparator solvers

Subtypes implementing the java.util.Comparator<T> interface are a special
case. These types can always be used as a built-in constraint solver, even if no
explicit annotations are present, because they already implicitly define four built-in
constraints. These four constraints are the same as the four in the “Comparables”
subtable of Table 4.1. Even though they are not (and cannot) be declared using
annotations, they are treated (e.g. in case of name clashes) as (user-defined) built-in
constraints. It is always possible to declare extra constraints solved by Comparator
constraint solvers, as long as the constraint identifiers are different than the ones of
the four implicit constraints.

4.4 Equality constraints

Equality constraints are special for several reasons:

1. We already saw in Section 4.3.1 that they occupy a special position when v1.5.0
reasoning about the properties of (binary) constraints.

2. The compiler has to be able to use them to generate implicit guards, as seen
in Section 2.8.4. Therefore, we have fixed its identifier: if you want your
constraint to be used to resolve implicit equality guards, you have to give it the

36

prefix identifier eq (and of course provide an ask version). Not that we intend
to change this, but it might be safest to use the IBuiltInConstraint.EQ
constant for this. Although it is common also to use = or == as infix identifier,
this is not required: when it encounters an implicit guard, the compiler will
only look for a suited ask built-in constraint with prefix identifier eq.

3. If the compiler uses hash indices, it relies on certain properties (transitivity
and symmetry to be precise) of equality constraints. We will give properties
each equality constraint should have below.

Required properties

Each equality constraint should be:

• reflexive (cf. Section 4.3.1 for a definition)

• symmetric (cf. Section 4.3.1 for a definition)

• transitive (cf. Section 4.3.1 for a definition)

• consistent: asking the constraint more than once (e.g. multiple invocations of
the equals method), consistently return the same result, provided no infor-
mation used in the comparison has changed. If the object is modified in such
a way that it (can) affect the entailment of an equality constraint, the built-in
constraint solver has to notify the necessary JCHR handlers (cf. Sections 3.2.3
and 4.1).

• hash-consistent: if two objects are equal, they also have the same hash value
(as returned by the hashCode method.

The equals method

We saw in Section 4.2 that the K.U.Leuven JCHR compiler treats the Object.equals
method as a built-in ask equality constraint. This is in fact only safe as long as
both arguments are fixed (cf. Section 3.2.3), and the implementor of the method
obeys the general contract specified in the Java API of this method. If this is done,
all properties listed in the above subsection indeed hold.

4.5 JCHR handlers as built-in solvers
v1.2.0

You can use a (compiled) JCHR handler as a built-in solver to another JCHR
handler. For this, generated handler classes (cf. Section 5.2.2) contain the necessary
annotations to declare them built-in constraint solver of some other handler (cf.
Section 2.6.2). User-defined JCHR constraints can only be told, never asked. The
JCHR constraints of a handler declared as built-in solver can also never be used in
the head of a rule.

Future thoughts
One might wonder why JCHR constraints cannot be asked. The reason is that, in general,
this is a complicated problem. The fact that the asked constraint is not present in a CHR
constraint store does not necessarily mean the constraint is not logically entailed by the
combined state of the CHR system and and the built-in stores. The problem is addressed
in [SDD+05b, SDD+05a].

37

Chapter 5

Compiling a K.U.Leuven
JCHR Handler

The K.U.Leuven JCHR compiler compiles a K.U.Leuven JCHR handler to a series
of Java source files. These are then typically1 compiled to Java byte code by a
third party Java compiler. Together with the classes present in the K.U.Leuven
JCHR runtime system, the compiled handler code then forms an efficient and stable
constraint system.

5.1 Requirements

The K.U.Leuven JCHR System is written using the Java 2 Standard Edition (J2SE)
5.0 platform [Sunb]. So to compile a K.U.Leuven JCHR handler you need to be
able to run programs written in that version of the Java language. You will also
need a Java SDK containing a compiler capable of compiling the generated Java
files (the compiler will also have to be Java 5.0 compatible).

By far the most widely used J2SE platform is Sun Microsystems’ reference im-
plementation, referred to as the J2SE Runtime Environment (JRE). Sun also offers
a Java compiler, contained in the JDK, their reference implementation of a Java
SDK2. Both software packages are available for free at Sun’s Java website [Sunb].
Note that the JDK installation program will also ask whether you want to install
the most recent JRE.

Asides from a suited Java platform, you also need the following Java libraries3:

• ANTLR Parser Generator v2 (version 2.7.5 or higher) [P+06]

• FreeMarker Template Engine (version 2.3 or higher) [fre06]

• Args4j (version 2.0.4 or higher!) [Kaw06]

All these tools offer pre-compiled jar files, that can easily be added to your class
search path.

1 There also exists compilers that compile e.g. to machine code. . .
2 If you are using the Sun Java compiler, we advice to use J2SE Development Kit (JDK) 1.5.0

update 6 or higher. Earlier version have a bug that causes some unnecessary warnings to be
generated [Sun05].

3 Though never tested, earlier versions of these libraries might also work. Any higher, backwards
compatible version will work.

38

5.2 Compilation

First make sure you have a suited Java platform, as described in the previous section,
and that the third party libraries listed there are included in the class search path.
We assume in this section that you are using Sun’s JDK, and that all libraries
are already included (e.g. using the CLASSPATH environment variable). For more
information on how to run a Java program, we refer to appendix B.

To compile a handler file called xxx.jchr, a typical session starts with:

java compiler.Main < xxx.jchr

(providing a single input file through the standard input stream), or: v1.4.0

java compiler.Main xxx.jchr

Using the latter method, you can also compile multiple JCHR files at once: v1.4.0

java compiler.Main xxx.jchr yyy.jchr

Combining these two input methods is not possible. If you provide one or more
file names, the default input stream will be ignored. Only if no file names are
provided, the compiler will check the standard input stream. If this stream is also
empty, the compiler assumes no source file was provided, and print a usage overview.
There exists a compiler option telling the compiler to block, waiting for input to
arive over the standard input stream. More information on compiler options is
provided in the next subsection.

Now, say the handler in xxx.jchr is declared part of package zzz.yyy.xxx (cf.
Section 2.3), then the compiler will generate several Java source files in the directory
./zzz/yyy/xxx. More details on generated files follow in Section 5.2.2. These files v1.5.0
then have to be compiled by your preferred Java compiler. This is done using an
instruction that looks like this:

javac zzz/yyy/xxx/*.java

It is possible (cf. Section 5.2.2) some extra generated helper classes will also
have to be compiled:

javac runtime/Tuple*.java

Note that for compiling the generated files only the K.U.Leuven JCHR runtime
system is required on the class path, i.e. no third party libraries (or the K.U.Leuven
JCHR compiler). The same applies when using the resulting classes in your appli-
cations afterwards (cf. Section 6).

5.2.1 Compiler options

The command line compiler tool also accepts compiler options:

Name Values Default Description
hash boolean true Toggles use of hash indices
debug off/default/full default See Section 7.1
standardinput / / Toggles blocking input

Options are used as follows:

java compiler.Main {-optionname optionvalue }* ...

Valid values for boolean options are: on/off, true/false and yes/no. The
standardinput option is an example of a flag option: it does not take a value, it
is just either present or not. If the latter flag is present, the compiler will block
waiting for input to arive over the standard input stream, as explained above.

39

5.2.2 Generated code
v1.5.0

For a source file declaring a handler h (this is the name given in the handler dec-
laration, which is not necessarily the same as the one used in the filename) the
compiler generates one Java source file called hHandler.java. This file will be
generated in the correct directory: if your handler is declared to be part of pack-
age org.foo.bar (cf. Section 2.3), the file will be generated in the corresponding
directory ./org/foo/bar/. If this directory does not exist, the compiler will try to
create it (this should not happen if you follow the proposed convention of keeping
the handler source file in this same directory).

The compiler might generate some extra utility class files ./runtime/tuples/Tuplen.java
with n a natural number. These file are part of the generic runtime code, and can
be used by multiple JCHR handlers.

If the handler declares user-defined constraints c1, . . . , cn, this source file will
contain the code for n + 1 classes:

• One top-level class, hHandler. The access modifier of this handler is the
same as the one preceding the handler declaration in the handler source file
(cf. Section 2.5).

• For each user-defined constraint ci an inner class ciConstraint.java. The
access modifier of a constraint class depends on the access modifier of the
corresponding constraint declaration (cf. Section 2.6.1).

More information on the generated classes and how to use them is given in the next
chapter.

40

Chapter 6

Using a K.U.Leuven JCHR
Handler

6.1 Requirements

To use a K.U.Leuven JCHR handler you only need the compiled files generated
by the K.U.Leuven JCHR compiler (cf. Section 5), and the K.U.Leuven JCHR
runtime system. The requirements for the Java platform are the same as described
in Section 5.1, except that you do not need a Java compiler (so e.g. the JRE would
suffice). Also, no third-party tool libraries are needed to use a JCHR handler.

6.2 Stand-alone

A compiled K.U.Leuven JCHR handler cannot be executed as a stand-alone pro-
gram, but is intended to be used integrated in another Java program.

Future thoughts

• We might someday add goal sections, like the ones used in JaCK [AKSS01, Sch99].
These are short snippets of code (similar to the body of a rule), allowing you to
encode simple queries, and would mainly be intended for experimentation and de-
bugging.

• An orthogonal alternative would be to simply allow a main method declaration,
allowing you to write any query, but not in a declarative way as in a goal section.

• Thirdly, it might be interesting (not only to become stand-alone, but also to initialize
a handler), to allow propagation rules without a head. This would be equivalent with
a single goal section, with that difference that it is also executed if used embedded
in other code, whereas goal sections are only executed if used in stand-alone mode.

6.3 Integration with Java

The K.U.Leuven JCHR System allows for an easy and direct integration of the
constraint system into a Java application or applet. As a running example, we will
be using the simple Java program listing on page 42.

The first thing to do is compile the handler(s) you want to use (as explained in
Section 5) and import the generated Java classes (cf. Section 5.2.2). If, as in our
example, the Handler class is part of the same package (cf. line 1) as the current

41

1 package examples.gcd;
2

3 import java.util.Collection;
4

5 import examples.gcd.GcdHandler.GcdConstraint;
6

7 public class Gcd {
8

9 public static void main(String[] args) throws Exception {
10 if (args.length != 2) printUsage();
11 else try {
12 final long i0 = Long.parseLong(args[0]),
13 i1 = Long.parseLong(args[1]);
14

15 if (i0 < 0 || i1 < 0) {
16 printUsage();
17 return;
18 }
19

20 // First we create a new JCHR constraint handler:
21 GcdHandler handler = new GcdHandler();
22

23 // Next we tell the JCHR handler the following two constraints:
24 handler.tellGcd(i0);
25 handler.tellGcd(i1);
26

27 // Afterwards we can lookup the constraints in the
28 // resulting constraint store:
29 Collection<GcdConstraint> gcds = handler.getGcdConstraints();
30 long gcd;
31

32 // There should be exactly one constraint, containing
33 // the greatest common divider:
34 assert gcds.size() == 1;
35

36 gcd = gcds.toArray(new GcdConstraint[1])[1].get$0();
37

38 // Simply print out the result:
39 System.out.printf(" ==> gcd(%d, %d) == %d", i0, i1, gcd);
40

41 } catch (NumberFormatException e) {
42 System.err.println(e.getMessage());
43 printUsage();
44 }
45 }
46

47 public final static void printUsage() {
48 System.out.println(
49 "Usage: java Gcd <positive int> <positive int>"
50);
51 }
52 }

42

1 PrimesHandler handler = new PrimesHandler();
2 handler.tellCandidate(1000);
3 Filter<PrimeConstraint> fltr = new InclusionFilter<PrimeConstraint>(
4 @Override
5 public boolean hasToInclude(PrimeConstraint constraint) {
6 return (constraint.get$0() > 123)
7 && (constraint.get$0() < 321);
8 }
9);

10 for (PrimeConstraint constraint : handler.getPrimeConstraints(fltr))
11 System.out.println(constraint);

Listing 4: Queriing the constraint store of a PrimesHandler for prime numbers
between 123 and 321 using a user-defined filter.

compilation unit, no import is of course necessary. The only constraint class for this
handler is imported on line 5. Since Constraint classes are always inner classes, v1.5.0
they do have to be imported explicitly.

Next, you typically create the handler objects you need. In our example this
is done on line 21. Not illustrated is that a JCHR handler’s constructor takes all
its declared built-in solvers as an argument (in the order they were declared, cf.
Section 2.6.2).

Thirdly, one tells a series of constraints to the solver. Of course, if built-in
solvers are present, also built-in constraints can be told or asked in between.

At any time, the current constraint JCHR store can be inspected. This is
because CHR is an incremental language. For each user-defined constraint C, a
handler class offers:

• a lookupC() method, returning a java.util.Iterator over all C constraints.

• a getCConstraints() method, which returns a java.util.Collection con- v1.3.1
taining all C constraints.

• a getCConstraints(Filter) method, which returns a filtered view of the v1.5.0
C constraints in the current store, using a user-defined filter (i.e. an in-
stance of util.iterator.Filtered.Filter). Note that you cannot directly
subclass the Filtered.Filter class, instead you should extend one of its
subclasses InclusionFilter, ExclusionFilter, IndexInclusionFilter or
IndexExclusionFilter.

The access modifier of these methods depends on the access modifier given in the
corresponding constraint declaration (cf. Section 2.6.1). In fact, for private con- v1.5.0
straints, these methods might not even be generated.

Example 6.1. If you want to iterate over all prime numbers between 123 and 321,
you can use the Java code from Listing 4.

Also, each handler object itself is a true collection of runtime.Constraints, in v1.3.2
the sence that it implements the Java interface java.util.Collection<Constraint>.
So, you can e.g. use the handler in a for-each loop somewhere in your Java code:

for (Constraint constraint : handler) {
...

}

43

An equivalent to the iterator method is the (legacy) lookup method. Both return v1.3.1
an iterator over all accessible constraints in the constraint store. For the definition
of ‘accessible’, see below. It is also possible get a filtered view (cf. supra) of all
accessible constraints at once using the Handler.filter(Filter) method. v1.5.0

v1.5.1To preserve encapsulation, non-public (cf. Section 2.6.1) constraints are not al-
ways included in the Collection the handler implements. In other words: they are
not automatically included in the results of methods like iterator() and size().
That is what we mean by ‘accessible’ in the above paragraph. We distinguish two
cases:

• For public handlers, only public and local constraints are accessible. For
those classes who have access to other constraints as well, the generated code
of public handlers will contain two extra methods:

includeProtected() This protected method returns a handler object of
the same static type as the instance it is called on. The result of this
method will then include all protected constraints in its collection.

includePackage() Same as includeProtected(), but includes constraints
with default access as well.

Example 6.2. To iterate over all non-private constraints of a handler,
you can use:

for (Constraint constraint : handler.includePackage())
System.out.println(constraint);

Of course, this method has default access, and can thus only be called
from within the same package.

• For handlers with default accessibility, only private constraints are excluded.

Note that in this scheme private constraints are indeed never exposed.
Tip: When using the more trusted versions of handlers (i.e. non-public han-

dlers, or the handlers returned by the include* methods), care should be taken not
to pass these instances to less trusted code. If such handler instances are leaked,
constraints with restricted access become visible for untrusted code. This should
not occur though, as these handlers can only be used by trusted code in the first
place (and code that leaks restricted information is not trustworthy)!

44

Chapter 7

Debugging a K.U.Leuven
JCHR Handler

Because handlers are compiled to Java code, you can simply use any tool you
normally use to debug Java. To help you understand the runtime behavior of a
handler, the K.U.Leuven JCHR System also offers a trace debugger.

7.1 Trace Debugger
v1.4.0

K.U.Leuven JCHR offers a simple tool for reasoning explanation: it is possible
to register listeners for important JCHR events. The current implementation is
in a limited, experimental stage, but is already very helpful for debugging and
understanding JCHR execution. Currently, events can be thrown on the following
execution points:

• Right after a constraint is activated (for the first time).

• Right after a constraint is reactivated (by some built-in event).

• Right after a constraint is stored in the constraint store.

• Right after a constraint is removed from the constraint store.

• Right after a constraint is terminated. v1.5.0

• Right before a rule fires. Arguments passed along with the event also include
the constraints that matched the head and the index of the active constraint.

The event listener interface is called runtime.debug.Tracer. Each handler can
have one Tracer, which has to be provided at its construction, or later through the
setTracer method. v1.5.0

Tip: runtime.debug.SysoutTracer provides an implementation of the Tracer
interface that prints all events to the default output stream. This is probably
the tracer that will be used most of the time for now. A similar tracer, called
runtime.debug.FileTracer, logs all events to a user-defined file. v1.5.0

Tip: Another simple tracer, runtime.debug.StatisticsTracer, collects some v1.5.0
basic runtime statistics like number of constraint activations, rule firings, etc. These
could be helpful to find e.g. performance bottlenecks.

Tip: If you want the events to be distributed to different listeners, you can
use the runtime.debug.CompositeTracer class.

45

Future thoughts
We are working on a visual tracer, showing a view of the constraint store. It already
works, but there is still some work to be done. Future versions of this visual tracer might
incorporate views of the constraint activision stack, since the constraint store does not
provide all required runtime information to effectively debug a JCHR program.

Code generation for throwing these events is controlled with the debug option
and the debug pragma. The debug option can be set command-line or in the JCHR
source file, and has three valid values:

off No code for (debug) tracing will be generated.

default This is the default value: code to add a tracer to a handler will be gen-
erated. The only event told are rule-firing, and only for rules annotated with
pragma debug. If no rule is annotated, no tracer code at all is generated. I.e.
by default none of the generated code is affected by this new feature. This is
done to avoid performance penalties.

full More events are raised then in the default case: all constraint activations,
reactivations, additions to and removals from the constraint store also result in
events. Also, all rule firings will raise events, independent of possible pragmas.

Future thoughts
The way trace settings are set is likely to change in future versions, as well as the events
that are raised. It would be e.g. interesting to integrate with the built-in solvers, to have
a more fine-grained control on which events should be raised, etc.

46

Appendix A

Example programs

This appendix contains several example programs referred to throughout the text.
More examples can be found on the K.U.Leuven JCHR website [VW06].

(1) primes This is not really a typical constraint solver, but a first example of the
use of CHR as “general purpose” Constraint Programming (CP)-language. It
also illustrates how primitive Java values are used naturally in JCHR.

(2) leq The leq-handler is the prototypical example of a generic handler. It also
shows how infix notation can improve readability. It is well-known in the CHR
literature that this handler all nice properties like confluence, completeness,
etc.

(3) fib This program clearly shows one of the advantages of using Java as a host
language: the availability of a rich type library. The BigInteger class allows
you to represent arbitrary large integer numbers in a simple and efficient way.
The handler also illustrates how primitive types and logical variables can be
used side by side quite elegantly.

(4) gcd This example is similar to 1. It shows how one can very easily implement
an algorithm – in this case a variant of Euclid’s algorithm for computing
greatest common dividers – using CHR.

(5) guf A second, larger example of the power of generic handlers is this generic
version of the union-find handler: the transition of untyped Prolog to strongly
typed Java is eased significantly. This handler also illustrates once more that
it can be very interesting to use logical variables1, Java-variables and even
primitive variables side by side.

(6) iuf This is the same solver as guf, but then for primitive integer-variables
(Java generics does not extend to primitive types). The acronym iuf stands
for integer union-find. Note that without generics, one would have to make
such an adjustment for each type, not only for primitive types!

(7) bool Even though this pure constraint solver is somewhat larger than the other
examples, it nevertheless is just as intuitive, flexible and efficient!

1 Do not forget that these are just Java-variables of some specific type, implementing logical
variables!

47

Example program A.1: the primes-handler

package examples;

import static util.arithmetics.primitives.intUtil.*;

public handler primes {
public constraint candidate(int);
local constraint prime(int);

rules {
candidate(1) <=> true.
candidate(N) <=> prime(N), candidate(dec(N)).

absorb @ prime(Y) \ prime(X) <=> modZero(X, Y) | true.
}

}

Example program A.2: the leq-handler

package examples.leq;

import runtime.*;

public handler leq<T> {
solver EqualitySolver<T>;

public constraint leq(Logical<T>, Logical<T>) infix =<;

rules {
reflexivity @ X =< X <=> true.
antisymmetry @ X =< Y, Y =< X <=> X = Y.
idempotence @ X =< Y \ X =< Y <=> true.
transitivity @ X =< Y, Y =< Z ==> X =< Z.

}
}

48

Example program A.3: the fib-handler

package examples.fib;

import java.math.BigInteger;
import runtime.Logical;
import static util.arithmetics.primitives.intUtil.*;

public handler fib {
solver runtime.EqualitySolver<BigInteger>;

public constraint fib(int N, Logical<BigInteger> M);

rules {
fib(N,M1), fib(N,M2) <=> M1 = M2, fib(N, M1);

fib(0,M) ==> M = 1;

fib(1,M) ==> M = 1;

local int N1, N2;
local Logical<BigInteger> M1, M2;

fib(N,M) ==> N > 1 |
N1 = dec(N), fib(N1,M1),
N2 = sub(N, 2), fib(N2,M2),
M = M1.add(M2);

}
}

Example program A.4: the gcd-handler

package examples.gcd;

import util.arithmetics.primitives.longUtil;

public handler gcd {
public constraint gcd(long);

rules {
gcd(0) <=> true.
gcd(N) \ gcd(M) <=> M >= N | gcd(longUtil.sub(M, N)).

}
}

49

Example program A.5: the guf-handler

package examples.unionfind;

import runtime.Logical;
import static util.arithmetics.primitives.intUtil.*;

public handler guf<E> {
solver runtime.EqualitySolver<E>;

public constraint make(+E),
union(+E, +E), find(+E, Logical<E> Result);

private constraint root(+E Root, int Rank),
link(+E Root1, +E Root2),
arrow(+E Node, +E Parent) infix ’~>’;

rules {
local Logical<E> R_x, R_y;

make @ make(X) <=> root(X,0);

union @ union(X, Y) <=> find(X, R_x), find(Y, R_y), link(R_x, R_y);

// path compression with immediate update thanks to logical variable
findNode @ X ’~>’ Parent_x, find(X, R) <=> find(Parent_x, R), X ’~>’ R;
// return function result in second argument
findRoot @ root(X, _) \ find(X, R) <=> R = X; /* found */

// root treatment
linkEq @ link(R, R) <=> true.
linkLeft @ link(R_x, R_y), root(R_x, Rank_x), root(R_y, Rank_y) <=>

Rank_x >= Rank_y | R_y ’~>’ R_x, root(R_x, max(Rank_x, inc(Rank_y)));
linkRight@ link(R_y, R_x), root(R_x, Rank_x), root(R_y, Rank_y) <=>

Rank_x >= Rank_y | R_y ’~>’ R_x, root(R_x, max(Rank_x, inc(Rank_y)));
}

}

50

Example program A.6: the iuf-handler

package examples.unionfind;

import runtime.primitive.LogicalInt;
import static util.arithmetics.primitives.intUtil.*;

public handler iuf {
solver runtime.primitive.IntEqualitySolver;

public constraint make(int),
union(int, int), find(int, LogicalInt Result);

private constraint root(int Root, int Rank),
link(int Root1, int Root2),
arrow(int Node, int Parent) infix ’~>’;

rules {
local LogicalInt R_x, R_y;

make @ make(X) <=> root(X,0);

union @ union(X, Y) <=> find(X, R_x), find(Y, R_y), link(R_x, R_y);

// path compression with immediate update thanks to logical variable
findNode @ X ’~>’ Parent_x, find(X, R) <=> find(Parent_x, R), X ’~>’ R;
// return function result in second argument
findRoot @ root(X, _) \ find(X, R) <=> R = X; /* found */

// root treatment
linkEq @ link(R, R) <=> true.
linkLeft @ link(R_x, R_y), root(R_x, Rank_x), root(R_y, Rank_y) <=>

Rank_x >= Rank_y | R_y ’~>’ R_x, root(R_x, max(Rank_x, inc(Rank_y)));
linkRight@ link(R_y, R_x), root(R_x, Rank_x), root(R_y, Rank_y) <=>

Rank_x >= Rank_y | R_y ’~>’ R_x, root(R_x, max(Rank_x, inc(Rank_y)));
}

}

51

Example program A.7: the bool-handler

package examples;

import runtime.primitive.LogicalBoolean;

public handler bool {
solver runtime.primitive.BooleanEqualitySolver;

public constraint
and(LogicalBoolean X, LogicalBoolean Y, LogicalBoolean Result),
or(LogicalBoolean X, LogicalBoolean Y, LogicalBoolean Result),
xor(LogicalBoolean X, LogicalBoolean Y, LogicalBoolean Result),
neg(LogicalBoolean X, LogicalBoolean Result),
imp(LogicalBoolean X, LogicalBoolean Y);

option(hash, false);

rules {
/*
* and/3 specification
* and(0,0,0).
* and(0,1,0).
* and(1,0,0).
* and(1,1,1).
*/

and(false,X,Y) <=> Y=false;
and(X,false,Y) <=> Y=false;
and(true,X,Y) <=> Y=X;
and(X,true,Y) <=> Y=X;
and(X,Y,true) <=> X=true,Y=true;
and(X,X,Z) <=> X=Z;
//and(X,Y,X) <=> imp(X,Y);
//and(X,Y,Y) <=> imp(Y,X);
and(X,Y,A) \ and(X,Y,B) <=> A=B;
and(X,Y,A) \ and(Y,X,B) <=> A=B;

/*
* or/3 specification
* or(0,0,0).
* or(0,1,1).
* or(1,0,1).
* or(1,1,1).
*/

or(false,X,Y) <=> Y=X;
or(X,false,Y) <=> Y=X;
or(X,Y,false) <=> X=false,Y=false;
or(true,X,Y) <=> Y=true;
or(X,true,Y) <=> Y=true;
or(X,X,Z) <=> X=Z;
//or(X,Y,X) <=> imp(Y,X);

52

//or(X,Y,Y) <=> imp(X,Y);
or(X,Y,A) \ or(X,Y,B) <=> A=B;
or(X,Y,A) \ or(Y,X,B) <=> A=B;

/*
* xor/3 specification
* xor(0,0,0).
* xor(0,1,1).
* xor(1,0,1).
* xor(1,1,0).
*/

xor(false,X,Y) <=> X=Y;
xor(X,false,Y) <=> X=Y;
xor(X,Y,false) <=> X=Y;
xor(true,X,Y) <=> neg(X,Y);
xor(X,true,Y) <=> neg(X,Y);
xor(X,Y,true) <=> neg(X,Y);
xor(X,X,Y) <=> Y=false;
xor(X,Y,X) <=> Y=false;
xor(Y,X,X) <=> Y=false;
xor(X,Y,A) \ xor(X,Y,B) <=> A=B;
xor(X,Y,A) \ xor(Y,X,B) <=> A=B;

/*
* neg/2 specification
* neg(0,1).
* neg(1,0).
*/

neg(false,X) <=> X=true;
neg(X,false) <=> X=true;
neg(true,X) <=> X=false;
neg(X,true) <=> X=false;
neg(X,X) <=> fail;
neg(X,Y) \ neg(Y,Z) <=> X=Z;
neg(X,Y) \ neg(Z,Y) <=> X=Z;
neg(Y,X) \ neg(Y,Z) <=> X=Z;
// Interaction with other boolean constraints
neg(X,Y) \ and(X,Y,Z) <=> Z=false;
neg(Y,X) \ and(X,Y,Z) <=> Z=false;
neg(X,Z) , and(X,Y,Z) <=> X=true,Y=false,Z=false;
neg(Z,X) , and(X,Y,Z) <=> X=true,Y=false,Z=false;
neg(Y,Z) , and(X,Y,Z) <=> X=false,Y=true,Z=false;
neg(Z,Y) , and(X,Y,Z) <=> X=false,Y=true,Z=false;
neg(X,Y) \ or(X,Y,Z) <=> Z=true;
neg(Y,X) \ or(X,Y,Z) <=> Z=true;
neg(X,Z) , or(X,Y,Z) <=> X=false,Y=true,Z=true;
neg(Z,X) , or(X,Y,Z) <=> X=false,Y=true,Z=true;
neg(Y,Z) , or(X,Y,Z) <=> X=true,Y=false,Z=true;
neg(Z,Y) , or(X,Y,Z) <=> X=true,Y=false,Z=true;
neg(X,Y) \ xor(X,Y,Z) <=> Z=true;
neg(Y,X) \ xor(X,Y,Z) <=> Z=true;
neg(X,Z) \ xor(X,Y,Z) <=> Y=true;

53

neg(Z,X) \ xor(X,Y,Z) <=> Y=true;
neg(Y,Z) \ xor(X,Y,Z) <=> X=true;
neg(Z,Y) \ xor(X,Y,Z) <=> X=true;
neg(X,Y) , imp(X,Y) <=> X=false,Y=true;
neg(Y,X) , imp(X,Y) <=> X=false,Y=true;

/*
* imp/2 specification (implication)
* imp(0,0).
* imp(0,1).
* imp(1,1).
*/

imp(false,X) <=> true;
imp(X,false) <=> X=false;
imp(true,X) <=> X=true;
imp(X,true) <=> true;
imp(X,X) <=> true;
imp(X,Y),imp(Y,X) <=> X=Y;

}
}

54

Appendix B

Running a Java Program

This section contains some basic pointers on how to run Java programs. Of course is
focused on what is needed to use the K.U.Leuven JCHR System, for more detailed
information you should consult the manual of the Java platform you are using. We
refer to sections 5.1 and 6.1 for the required version of the Java platform. The main
focus here will be the use of Sun’s distribution of Java (JRE and JDK) [Sunb].
If you are using another Java platform implementation, or some Java IDE (like
Eclipse), then you should look at their respective documentations for information.

B.1 Verifying Java Platform version

To verify which version of the Java platform (if any) is installed on your system,
you typically type on the command line:

java -version

Because you will probably also need to compile the generated Java files (cf. Sec-
tion 5), you do not only need a suited JRE but also the JDK, containing the basic
tools required to create Java applications, like a Java compiler. You can check
whether a suited version of the compiler is installed like this:

javac -version

The Sun reference distribution can be downloaded freely at [Sunb]. Note that when
installing the JDK, the installation program will also whether you want to install
the JRE as well.

B.2 Setting the Java class search path

When the Java virtual machine runs your program, it searches for application
.class files using the paths listed in the class search path. The compiler searches
for required components the same way. By default they look for classes in the cur-
rent working directory. However, if your program uses classes that are not in the
current working directory, you need to explicitly list all the directories containing
classes used by the application. In addition, if your program uses classes contained
in a jar file, then that file must be listed in the class search path as well.
There are (at least) two ways to specify the class search path:

1. Using the classpath-option of the program, e.g.

java -classpath ***** SomeClassContainingMain

55

and like ways:

javac -classpath ***** SomeSourceFile.java

2. Using a CLASSPATH environment variable. For a Windows system:

set CLASSPATH=*****

For a Linux system:

export CLASSPATH *****

or, depending on the type of Linux shell you use:

setenv CLASSPATH *****

You only need to do this once per session.

Most systems offer ways of setting environment variables other than from the
command line; e.g. in Windows XP this can be done in:

Control Panel → System → Advanced → Environment Variables

The advantage of the latter method is that these settings are persistent (i.e.
you do not have to set the class path each time you want to use the system
again).

In any case the ***** has to be replaced by a list of (absolute or relative) paths
to directories and/or jar files. On a Windows system this list is separated by
semicolons, e.g.

%classpath%;c:\java\libraries\;..\KUL_JCHR.jar;.

On a Linux system the list is separated by colons:

$CLASSPATH:/home/java/libraries/:../KUL_JCHR.jar:.

Note that we included the current working directory – as is necessary most of the
time – in both examples by including ‘.’. Also, we included the current classpath as
well. Leaving this first item out of the list, allows you to overwrite the classpath en-
vironment variable rather than extending it. Since in general using the K.U.Leuven
JCHR System requires several libraries (i.e. jar files), the second option (the envi-
ronment variable) seems preferable. It is generally easier to include all jars directly
in your class search path, even if some are not strictly needed. For details on the
required libraries, we refer to sections 5.1 and 6.1.

56

Appendix C

Benchmarking JCHR

The K.U.Leuven JCHR website [VW06] contains a series of benchmarks, of which
some results are shown in [VW05, VWSD05]. The Prolog-counterparts of these
benchmarks can be found on the website of the K.U.Leuven CHR System [Sch06].

57

Bibliography

[AKSS01] Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias
Schmauß. JACK: A Java Constraint Kit. In Michael Hanus, editor,
Proceedings of the International Workshop on Functional and (Con-
straint) Logic Programming WFLP, volume 64 of Electronic Notes in
Theoretical Computer Science, pages 1–17, Kiel, Germany, Septem-
ber 13–15 2001.

[Bra04] Gilad Bracha. Generics in the Java Programming Language. Sun Mi-
crosystems, Inc., July 2004. http://java.sun.com/j2se/1.5/pdf/
generics-tutorial.pdf.

[BV94] Jacques Bouaud and Robert Voyer. Behavioral match: Embedding
production systems and objects. In Pachet [eoo94].

[dFFR00] Carlos Santos da Figueira Filho and Geber Lisboa Ramalho. JEOPS
- The Java Embedded Object Production System. In Maria Monard
and Jaime S Sichman, editors, Advances in Artificial Intelligence: Pro-
ceedings of International Joint Conference, 7th Ibero-American Con-
ference on AI, 15th Brazilian Symposium on AI (IBERAMIA-SBIA),
volume 1952 of Lecture Notes in Computer Science (LNCS) – Lecture
Notes in Artificial Intelligence (LNAI), pages 53–62, Atibaia, Brazil,
19–22 November 2000.

[dlBDMS02] Maŕıa Garćıa de la Banda, Bart Demoen, Kim Mariott, and Peter J.
Stuckey. To the gates of HAL: a HAL tutorial. In Zhenjiang Hu
and M. Rodrguez-Artalejo, editors, Proceedings of the Sixth Inter-
national Symposium on Functional and Logic Programming, number
2441 in Lecture Notes in Computer Science, pages 47–66, Aizu, Japan,
September 15–17 2002. Springer-Verlag.

[DSdlBH03] Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and
Christian Holzbaur. Extending Arbitrary Solvers with Constraint
Handling Rules. In Dale Miller, editor, Proceedings of the Fifth ACM
SIGPLAN International Conference on Principles and Practice of
Declarative Programming, pages 79–90, Uppsala, Sweden, August 27–
29 2003. ACM Press.

[DSdlBH04] Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and
Christian Holzbaur. The refined operational semantics of Constraint
Handling Rules. In Bart Demoen and Vladimir Lifschitz, editors, Pro-
ceedings of the 20th International Conference on Logic Programming
(ICLP), volume 3132 of Lecture Notes in Computer Science (LNCS),
pages 90–104. Springer-Verlag, September 2004.

[Duc05] Gregory Duck. Haskell CHR. http://www.cs.mu.oz.au/~gjd/
haskellchr/, March 2005.

58

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
http://www.cs.mu.oz.au/~gjd/haskellchr/
http://www.cs.mu.oz.au/~gjd/haskellchr/

[eoo94] Proceedings of the OOPSLA’94 workshop on Embedded Object-
Oriented Production Systems (EOOPS). In F. Pachet, editor, Pro-
ceedings of the OOPSLA’94 workshop on Embedded Object-Oriented
Production Systems (EOOPS), Portland, Oregon, October 1994.

[FB95a] Thom Frühwirth and P. Brisset. ECLiPSe3.5.1 Extensions User Man-
ual, chapter Chapter on Constraint Handling Rules. ECRC, Munich,
Germany, December 1995.

[FB95b] Thom Frühwirth and Pascal Brisset. High-level implementations of
Constraint Handling Rules. Technical Report ECRC-95-20, ECRC,
Munich, Germany, June 1995.

[For82] Charles L. Forgy. Rete: a fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19:17–37, 1982.

[fre06] FreeMarker Template Engine. http://www.freemarker.org/, Au-
gust 2006.

[Frü98] Thom Frühwirth. Theory and Practice of Constraint Handling Rules.
Journal of Logic Programming, Special Issue on Constraint Logic Pro-
gramming, 37(1–3):95–138, October 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1995.

[GJSB04] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification. Addison-Wesley Professional, third edition,
2004. Available online at http://java.sun.com/docs/books/jls/.

[H+06] Christian Holzbaur et al. SICStus Prolog Manual, chapter Constraint
Handling Rules. 3.12.5 edition, March 2006.

[HdlBSD05] Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and
Gregory J. Duck. Optimizing Compilation of Constraint Handling
Rules in HAL. Theory and Practice of Logic Programming – Special
Issue on Constraint Handling Rules, 5(4–5):503–531, July/September
2005.

[HF99] Christian Holzbaur and Thom Frühwirth. Compiling constraint han-
dling rules into Prolog with attributed variables. In G. Nadathur,
editor, Proceedings of the International Conference on Principles and
Practice of Declarative Programming, number 1702 in Lecture Notes
in Computer Science, pages 117–133. Springer Verlag, 1999.

[HF00] Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Han-
dling Rules Compiler and Runtime System. Journal of Applied
Artificial Intelligence, Special Issue on Constraint Handling Rules,
14(4):369–388, April 2000.

[Kaw06] Kohsuke Kawaguchi. args4j – Java command line option parsing li-
brary. https://args4j.dev.java.net/, September 2006.

[MBLG90] Daniel P. Miranker, David A. Brant, Bernie Lofaso, and David Gad-
bois. On the Performance of Lazy Matching in Production Systems.
In 8th National Conference on Artificial Intelligence, pages 685–692.
AAAI, July 1990.

59

http://www.freemarker.org/
http://java.sun.com/docs/books/jls/
https://args4j.dev.java.net/

[P+06] Terence Parr et al. ANTLR Parser Generator. http://www.antlr.
org/, August 2006.

[Pac95] François Pachet. On the Embeddability of Production Rules in
Object-Oriented Languages. Journal of Object-Oriented Programming
(JOOP), 8(4):19–24, July/August 1995.

[Sch99] Matthias Schmauß. An Implementation of CHR in Java. Diplomarbeit
(german msc thesis), Department of Computer Science, University of
Munich, Germany, 1999.

[Sch05] Tom Schrijvers. Analyses, optimizations and extensions of Constraint
Handling Rules. PhD thesis, K.U.Leuven, Leuven, Belgium, June
2005.

[Sch06] Tom Schrijvers. The K.U.Leuven CHR System. http://www.cs.
kuleuven.ac.be/~toms/Research/CHR/, August 2006.

[SD04] Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system:
implementation and application. In Thom Frühwirth and Marc Meis-
ter, editors, First Workshop on Constraint Handling Rules: Selected
Contributions, Ulm, Germany, May 2004.

[SDD+05a] Tom Schrijvers, Bart Demoen, Gregory J. Duck, Peter J. Stuckey,
and Thom Frühwirth. Automatic implication checking for CHR con-
straint solvers. Technical Report CW 402, K.U.Leuven, Department
of Computer Science, Leuven, Belgium, January 2005.

[SDD+05b] Tom Schrijvers, Bart Demoen, Gregory J. Duck, Peter J. Stuckey,
and Thom Frühwirth. Automatic implication checking for CHR con-
straints. In Horatiu Cirstea and Narciso Marti-Oliet, editors, Proceed-
ings of the 6th International Workshop on Rule-Based Programming,
pages 93–111, Nara, Japan, April 23 2005.

[SF+06] Tom Schrijvers, Thom Frühwirth, et al. CHR Homepage. http://
www.cs.kuleuven.be/~dtai/projects/CHR, August 2006.

[Smi01] Chris Smith. Consistent comparisons. http://cdsmith.twu.net/
professional/java/pontifications/comparison.html, June 6
2001.

[SS01] Peter J. Stuckey and Martin Sulzmann. A systematic approach in type
system design based on Constraint Handling Rules. In Third Work-
shop on Rule-Based Constraint Reasoning and Programming, Decem-
ber 2001.

[SS05] Peter J. Stuckey and Martin Sulzmann. A theory of overloading. ACM
Trans. Program. Lang. Syst., 27(6):1216–1269, 2005.

[SSD05a] Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and Con-
tinuation Optimization for Occurrence Representations of CHR. In
Maurizio Gabbrielli and Gopal Gupta, editors, Proceedings of the 21st
International Conference on Logic Programming (ICLP), volume 3668
of Lecture Notes in Computer Science (LNCS), pages 83–97, October
2005.

60

http://www.antlr.org/
http://www.antlr.org/
http://www.cs.kuleuven.ac.be/~toms/Research/CHR/
http://www.cs.kuleuven.ac.be/~toms/Research/CHR/
http://www.cs.kuleuven.be/~dtai/projects/CHR
http://www.cs.kuleuven.be/~dtai/projects/CHR
http://cdsmith.twu.net/professional/java/pontifications/comparison.html
http://cdsmith.twu.net/professional/java/pontifications/comparison.html

[SSD05b] Jon Sneyers, Tom Schrijvers, and Bart Demoen. Guard and Continua-
tion Optimization for Occurrence Representations of CHR. Technical
Report CW 420, K.U.Leuven, Department of Computer Science, Leu-
ven, Belgium, July 2005.

[Suna] Sun Microsystems, Inc. Code conventions for the Java programming
language. http://java.sun.com/docs/codeconv/.

[Sunb] Sun Microsystems, Inc. Java Homepage. http://java.sun.com/.

[Sun05] Sun Microsystems, Inc. Java bug #2125378. http://bugs.sun.com/
bugdatabase/view_bug.do?bug_id=2125378, April 14 2005.

[Sun06a] Sun Microsystems, Inc. Java Beans. http://java.sun.com/
products/javabeans/, August 2006.

[Sun06b] Sun Microsystems, Inc. The Java Tutorials – JavaBeans – Les-
son: Properties. http://java.sun.com/docs/books/tutorial/
javabeans/properties/, August 2006.

[Sun06c] Sun Microsystems, Inc. JavaDoc Tool Home Page. http://java.
sun.com/j2se/javadoc/, August 2006.

[SWD03] Tom Schrijvers, David Warren, and Bart Demoen. CHR for XSB.
In R. Lopes and M. Ferreira, editors, Proceedings of CICLOPS 2003:
Colloquium on Implementation of Constraint and LOgic Programming
Systems, pages 7–20, 2003.

[SWD05] Tom Schrijvers, Jan Wielemaker, and Bart Demoen. Constraint han-
dling rules for swi-prolog. In 9th Workshop on (Constraint) Logic
Programming, Ulm, February 2005. Abstract Only.

[SZD06] Tom Schrijvers, Neng-Fa Zhou, and Bart Demoen. Translating Con-
straint Handling Rules into Action Rules. In Tom Schrijvers and Thom
Frühwirth, editors, Proceedings of the Third Workshop on Constraint
Handling Rules (CHR 2006), Venice, Italy, 9 July 2006.

[tur]

[VA06] Jairson Vitorino and Marcus Aurelio. CHORD. http://
sourceforge.net/projects/chord/, August 2006.

[VW05] Peter Van Weert. Constraint Programming in Java: een gebruiksvrien-
delijk, flexibel en efficient CHR-Systeem voor Java. Master’s thesis,
K.U.Leuven, Belgium, May 2005.

[VW06] Peter Van Weert. JCHR Homepage. http://www.cs.kuleuven.be/
~petervw/JCHR/, August 2006.

[VWSD05] Peter Van Weert, Tom Schrijvers, and Bart Demoen. K.U.Leuven
JCHR: a user-friendly, flexible and efficient CHR system for Java.
In Tom Schrijvers and Thom Frühwirth, editors, Proceedings of the
Second Workshop on Constraint Handling Rules (CHR 2005), pages
47–62, Sitges, Spain, 5 October 2005.

[Wol01] Armin Wolf. Adaptive constraint handling with CHR in Java. In
Toby Walsh, editor, Proceedings of the 7th International Conference
on Principles and Practice of Constraint Programming (CP 2001),
volume 2239 of Lecture Notes in Computer Science (LNCS), pages
256–270, Paphos, Cyprus, November 26–December 1 2001. Springer.

61

http://java.sun.com/docs/codeconv/
http://java.sun.com/
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=2125378
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=2125378
http://java.sun.com/products/javabeans/
http://java.sun.com/products/javabeans/
http://java.sun.com/docs/books/tutorial/javabeans/properties/
http://java.sun.com/docs/books/tutorial/javabeans/properties/
http://java.sun.com/j2se/javadoc/
http://java.sun.com/j2se/javadoc/
http://sourceforge.net/projects/chord/
http://sourceforge.net/projects/chord/
http://www.cs.kuleuven.be/~petervw/JCHR/
http://www.cs.kuleuven.be/~petervw/JCHR/

List of Acronyms

ANTLR ANother Tool for Language Recognition

API Application Program Interface

CHR Constraint Handling Rules

CP Constraint Programming

C(L)P Constraint (Logic) Programming

DJCHR Dynamic Java Constraint Handling Rules

ECLiPSe ECRC Constraint Logic Parallel System (cf. ECLiPSe-Prolog)

ECRC European Computer-Industry Research Centre

HAL Heuristically programmed ALgorithmic computer (after the “HAL
9000” from the Stanley Kubrick and Arthur C. Clarke movie 2001:
A Space Odyssey)

HTML HyperText Markup Language

IDE Integrated Development Environment

J2SE Java 2 Standard Edition

JaCK Java Constraint Kit

jar Java ARchive

JCHR Java Constraint Handling Rules

JDK J2SE Development Kit

JRE J2SE Runtime Environment

K.U.Leuven Katholieke Universiteit Leuven (Catholic University Leuven)

LEAPS Lazy Evaluation Algorithm for Production Systems

Prolog Programming in Logic

SICS Swedish Institute of Computer Science

SDK Software Development Kit

SWI Sociaal-Wetenschappelijke Informatica (cf. SWI-Prolog)

62

	Introduction
	About the K.U.Leuven JCHR System
	Disclaimer
	Compared to other CHR sytems
	Compared to other Java CHR sytems

	About this Manual
	Call for comments
	Notation

	Defining a K.U.Leuven JCHR Handler
	Identifiers
	Comments
	The package Declaration
	import Declarations
	Single type imports
	Type imports on demand
	Single static imports
	Static imports on demand

	The handler Declaration
	Generic handlers

	Declarations
	constraint declarations
	solver declarations

	Compiler Options
	The rules Section
	Variable declarations
	Rule Structure
	Separators

	Conjuncts and arguments
	Conjuncts
	Constraints
	Host language statements

	Arguments
	Implicit arguments

	Heads
	Implicit variable declarations
	Implicit guards
	Anonymous variables

	Guards
	Bodies
	Pragmas
	pragma passive

	Types
	Built-in Types
	Coercion

	User-defined Types
	Type information
	Coercion
	Declaration/initialization

	The modified problem
	Observing modifications
	Fixed types
	Observable user-defined types
	runtime.Observable
	runtime.hash.HashObservable

	An example: runtime.Logical
	Type modifiers

	Built-in Constraints and Solvers
	Ask versus Tell
	Built-in built-in constraints
	User-defined built-in constraints
	Binary constraints
	Declaration of infix identifiers
	Extra metadata

	java.util.Comparator solvers

	Equality constraints
	Required properties
	The equals method

	JCHR handlers as built-in solvers

	Compiling a K.U.Leuven JCHR Handler
	Requirements
	Compilation
	Compiler options
	Generated code

	Using a K.U.Leuven JCHR Handler
	Requirements
	Stand-alone
	Integration with Java

	Debugging a K.U.Leuven JCHR Handler
	Trace Debugger

	Example programs
	Running a Java Program
	Verifying Java Platform version
	Setting the Java class search path

	Benchmarking JCHR

