You can’t always shrink what you want

Paolo Baldan
Department of Pure and Applied Mathematics
University of Padova

In 2150, Professor Mat, a mathematician, is having hard times in keeping
track of the phone numbers of his friends, which, year by year, with the discovery
of new inhabited planets, are increasing in cardinality and length. His address
book is getting larger and larger, so that he starts seeking for a space saving
technique for recording numbers.

He explains his problem to Professor Hal, a computer scientist, who replies:
“I have an idea. You could represent efficiently a number by means of a program
which generates the number itself! Obviously, this is convenient only if the size
of the program is smaller than that of the number ...”

Mat says: “Ah, I see, this looks nice. I'll think about.”

The day after they meet again and Mat explains: “Unfortunately the efficient
representation you were suggesting cannot be found for any natural number . . ..
There are numbers, call them random numbers, for which any program which
generates the number have size greater or equal than that of the number itself!
Actually, there are infinitely many such numbers!”

Q1. Could you justify Professor Mat’s statement? le., could you prove that
there are infinitely many random numbers?

Now that Hal is convinced about the infiniteness of the set of random num-
bers, Mat continues: “Still, you could help me by writing a program that checks
whether a number is random or not. Then, before adding a new number in my
address book I can check if it is random, and consequently decide whether I
should insert directly the number or look for a more efficient program represen-
tation”.

Hal replies: “I am sorry, I can’t help you! A program checking whether a
number is random or not cannot exist ...”

Q2. Could you give a proof of Professor Hal’s assertion?

Note: One can assume that numbers and programs are encoded, as it happens
in a computer, as sequences of binary digits. Then by size of a program or
number we refer to the length of the corresponding binary encoding.

Solutions

Q1: Observe that for any n, there are 2™ numbers of size n and thus there are
¥p_ 2% = 2nF!l — 2 numbers of size < n. Similarly, the number of different



programs of size less than n is bounded by the number of different sequences
of binary digits of length k£ < n, i.e., 22;112’“ = 2" — 2. Therefore there are at
least 2" numbers of size < n which cannot be generated by a program of size
less than n, and thus which are random. As this applies to any n, we deduce
that there are infinitely many random numbers.

Q2: We proceed by contradiction. Assume that there exists a program Rnd
checking whether a number n is random, i.e., Rnd inputs a number n ad returns
a value Rnd(n) which is true or false, according to the fact that n is random or
not. Using Rnd we can easily construct, for any k, a program GenRnd_k which
generates a random number of size larger than k:

procedure GenRnd_k {
i=0
while log(i)<=k or not Cas(i) do
i=1+1
return i

}

Now, the programs GenRnd_k are essentially all the same apart for the fact
that they mention the parameter k. Hence the size of a program GenRnd_k will
be log(k) — the size of number k& — plus the size C of the common “skeleton”
of all programs, i.e., C'+log(k) for a suitable fixed constant C. By construction,
the number generated by GenRnd_k has size larger than k, which, for a suitable
choice of k, is larger than the size C' + log(k) of the generating program. Hence
the generated number cannot be random. Absurd.

Remark 1. The considerations above are sloppy for what concerns the encodings
of numbers and programs. If you feel unhappy about that, notice that the argu-
ments can be formalized in a setting in which an Godel numbering ¢g, ¢1, ¢, . . .
of the computable functions is fixed and a number n is called random if for any
index x such that the function ¢, is the constant n it holds z > n. Then Q1
can be answered by a combinatorial argument based on the fact that for any
computable function there are infinitely many indexes, while a proof of Q2 uses
the S-m-n Theorem and Second Recursion Theorem from computability theory.

Remark 2. This puzzle is inspired by the notion of Kolmogorov-Chaitin complex-
ity in algorithmic information theory and by the related Chaitin’s incomplete-
ness theorem (see, e.g., Gregory Chaitin “Information-Theoretic Limitations of
Formal Systems”. Journal of the ACM 21 (1974), pp. 403-424).



