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Abstract. The study of quantitative information within languages for concur-
rency has recently gained a lot of momentum. In many applications, quantitative
information becomes crucial when refining models with empirical data, and is of
the essence for verification purposes. In this paper we survey some of the existing
languages for concurrency that feature quantitative information, with a special in-
terest in those proposed for biological applications. This survey is then used as a
context to motivate a novel approach for analyzing systems exhibiting stochastic
behavior, in the form of a discrete-timed concurrent constraint process calculus.
Some design decisions involved in the definition of an operational semantics for
such a calculus are discussed.

1 Introduction

The study of quantitative information within languages for concurrency has recently
gained a lot of momentum. In many applications, quantitative information becomes
crucial when refining models with empirical data, and is of the essence for verification
purposes. Two main models of quantitative information can be singled out from the vast
literature on the subject. Given a computation that can perform different, competing
actions, a probabilistic model provides a probability distribution over such actions. In
contrast, a stochastic model relates each action to a random variable which determines
its duration: given a set of competing actions, the fastest action (i.e. the one with the
shortest duration) is executed. Consequently, notions not considered in a probabilistic
model (e.g. speed) are fundamental in a stochastic setting. Not surprisingly, areas in
which time is essential (e.g. systems biology, performance modeling) have found in
languages featuring stochastic information adequate frameworks for analysis.

In the first part of this paper we review some languages for concurrency that in-
clude quantitative behavior in their syntax and/or semantics. Our review shall focus on
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ported by COLCIENCIAS (Instituto Colombiano para el Desarrollo de la Ciencia y la Tec-
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languages and formalisms proposed in the realm of systems biology. Within systems
biology, languages for concurrency serve to develop a high-level representation that
stands between the actual biological system and the mathematical models traditionally
used for prediction purposes. Such a representation is intended as a testbed for plau-
sible hypotheses; these are used both to complement real “in vivo” experiments and
to refine the mathematical models. In turn, this could trigger better defined real exper-
iments. Consequently, formal languages for systems biology not only must allow for
faithful and intuitive way representations of systems, but should also offer mechanisms
for analysis. These should be aimed for a study at different levels of detail. Indeed, given
the enormous amount of biological data gathered in the last years, it is now a growing
necessity for researchers to give such data a coherent meaning; the interest is then to
identify and understand biological functions building on the available knowledge on
basic elements such as proteins and genes. This requires following a system-level ap-
proach where isolated data is structured as to make up interactions that, in turn, will
constitute more complex interactions at a higher level of abstraction.

The analysis at different levels of detail is also challenging from the semantic point
of view because, depending on the level of detail, the randomness associated to the
system (and to be captured by the semantics) varies. For instance, when the interest is
on very fine descriptions of systems, individual reactions between components are de-
scribed in terms of rates, and one usually deals with stochastic simulations. When the
analysis is at a higher level of detail, deterministic models based on ordinary differen-
tial equations (ODEs) are usually a more convenient approach. This way, the need for
analyzes at different levels of detail might call for the definition of several semantics
for the language, each one of them providing different abstraction criteria over systems
behavior. The several semantics not only should keep a certain consistency among them
but should also respect the biological and physical conditions stipulated by the chosen
level of analysis. This way, for instance, while a high level of abstraction could consider
elementary mass-action kinetic laws (for which the rate of a single reaction is propor-
tional to the product of the concentrations of the reactants), a lower level of abstraction
could advocate the use of more precise criteria for systems description, such as general
kinetic laws (which concern sequences of reactions). In order to be able to complement
real experiments, the semantics should count with suitable reasoning techniques, that
can be implemented as effective analysis tools within the frameworks biologists and
other experts use.

In the second part of the paper, we shall give the rationale for a novel semantics
for a discrete-timed concurrent constraint programming language. The semantics can
be considered stochastic in that it considers rates during the evolution of the system.
Nevertheless, seen as a whole, both language and semantics can capture different per-
spectives of the quantitative information associated to a (biochemical) system. This is
not only useful for description purposes, but also appears promising for the definition
of model-checking techniques for system analysis. More importantly, in the biological
domain our semantics could adjust well to represent different levels of detail, by exploit-
ing rates in conjunction with partial information in terms of constraints. We elaborate
further on these ideas below.



Concurrent constraint programming (CCP) [1,2] is a declarative model for con-
currency with strong ties to logic. In CCP, systems are described by pieces of partial
information called constraints. Processes interact in a shared store; they either add new
constraints or synchronize on the already available information. Notably, processes in
CCP can be seen, at the same time, as computing agents and logic formulas. This not
only constitutes a rather elegant approach for verification; it is fair to say that CCP
provides a unified framework for system analysis.

In CCP, a great deal of quantitative information is captured by the notion of con-
straint system, a structure that defines logic inference capabilities over constraints. Con-
straint systems are parametric to CCP: several kinds of conditions (over integers, reals,
strings) can be stated by choosing the appropriate constraint system(s). Timed concur-
rent constraint programming (tcc) [3] is a CCP-based framework for reactive systems.
In tcc, time is explicitly represented as discrete time units in which computation takes
place; tcc provides constructs to control process execution along such units. In previ-
ous works, tcc has been shown to have a place in systems biology [4,5].

In the light of stochastic models for quantitative information, the explicit time in tcc
poses a legitimate question, that of determining to what extent the notions of stochastic
duration and of discrete time unit can be harmoniously conciliated within a CCP-based
framework. The question is relevant because it can give clues on clean semantic founda-
tions for quantitative information in CCP, which in turn, should contribute to the devel-
opment of more effective reasoning techniques over reactive systems in many emerging
applications.

We outline preliminary results on an operational semantics for a tcc language with
explicit stochastic durations, as presented in [6]. The proposed semantics aims at an
explicit account of stochastically derived events using the description power of timed
CCP calculi. This is a feature that in other CCP calculi (e.g. [7]) is handled at best
implicitly. We define stochastic events in terms of the time units provided by the calcu-
lus: this provides great flexibility for modeling and, as mentioned before, it allows for
a clean semantics. Most importantly, by considering stochastic information and adher-
ing to explicit discrete time, it is possible to reason about processes using quantitative
logics (both discrete and continuous), while retaining the simplicity of calculi such as
ntcc [8] for deriving qualitative reasoning techniques (such as denotational semantics
and proof systems). We consider existing qualitative reasoning techniques have a great
potential for guiding/complementing the use of (usually costly) quantitative ones. Such
an approach for applying qualitative techniques has shown to be useful in the biological
context [9].

This work is part of a larger research program aimed at developing robust CCP-
based techniques for analyzing complex applications and systems in computer music,
security and biology. As such, it is our objective to formalize stochastic information in
tcc in such a way that resulting languages and techniques (i) remain generic enough so
to fit well in the target applications, and (ii) be amenable to efficient implementations,
in the form of e.g. simulators and model-checkers.

Structure of this document. Next, we will give a (non exhaustive) overview of some lan-
guages for concurrency proposed for biological applications. In Section 3 we introduce



our proposal for a stochastic semantics in the CCP model. An example of our approach
is discussed in Section 4. Finally, we offer some concluding remarks (Section 5).

2 Some Languages for Concurrency in the Biological Setting

Languages for concurrency have been originally proposed for the description and anal-
ysis of concurrent and distributed systems. Main representatives include Milner’s CCS
[10] and Hoare’s CSP [11], both proposed in the late 80s. In particular, CCS advocates
for a compositional definition of concurrent systems, in which communication based
on synchronization on designated names or channels. The π-calculus [12], one of the
most successful languages in this research strand, builds on the communication scheme
of CCS by allowing the use of channels as parameters in synchronizations, thus permit-
ting the representation of systems with dynamic communication topologies.4

The first work exploiting languages for concurrency in the biological setting was
the one by Regev, Silverman and Shapiro, who used the π-calculus to define the so-
called molecules as processes abstraction [13]. Such an abstraction relates individ-
ual molecules with concurrent processes, defines molecular interaction as synchronous
communication among processes, and reflects biochemical changes as transitions or
mobility (which, in the π-calculus, is formalized as channel passing). Soon after this
seminal work, the need for stochastic behavior in models was detected, and then Pri-
ami’s stochastic π-calculus [14] was then adopted as target language, and tools based
on it were proposed for the simulation of biochemical systems.

After the work of Regev et al., many other languages and formalisms from concur-
rency theory have been proposed for the study of biological phenomena, and one finds
a myriad of motivations in each of them. Now we review three such formalisms; more
in-depth treatments can be found elsewhere (see, for instance, [15] or the recent volume
[16]).

2.1 PEPA

PEPA is a process calculi originally proposed for performance evaluation of systems
[17]. In the biological context, PEPA has been used in the analysis of biochemical net-
works. Modeling in PEPA builds on the seminal work by Regev et al. by proposing a
more abstract approach: instead of enforcing the analogy of molecules as processes,
PEPA models aim at representing species as processes, taking into account the concen-
tration of species rather than the actual number of molecules in them. This is justified
by the high costs of carrying out numerical solutions for systems represented from a
individual point of view. The syntax of PEPA includes the following kinds of operators:

– Prefixes, of the form (α, r).P which denote a process that has an action of type α.
The duration of α is exponentially distributed with parameter r. Once this action is
performed, the process behaves as P .

4 The point-to-point communication scheme of CCS and the π-calculus could be arguably con-
sidered in opposition to the communication in CCP, which resembles more to a “broadcasting”
scheme.



– Choices, of the form P + Q which represent a system that might perform the ac-
tions of either P or Q. The first action that completes determines which one of the
summands is preserved; the other is discarded.

– Constant definitions, of the form C
def
= P , useful to assign names to patterns of

behavior (here denoted as P ).
– Hiding, denoted P/H, defining a set of actions H that should remain internal or

private to a process P .
– Cooperation, which defines the synchronization of two processes on a given a set

of actions. Synchronization can be multiway, in the sense that several processes can
synchronize on the same action; by having more than two processes synchronizing
on some action, the rate associated with the synchronized activity should change.

At this point, a few words on the relation between constructs in PEPA with other
languages for concurrency is worthwhile. The first five operands can be well consid-
ered as standard in languages for concurrency, and appear —in a way or another—
in process calculi such as CCS and CSP. In PEPA, the cooperation operator could be
regarded as a quantitative version of the traditional operator for parallel composition,
which defines the concurrent execution of two different components. This composition
preserves the actions of each of the components, and leads to synchronization in the
case they perform some “compatible” action. In CCS, for instance, for each action l
there is a co-action l̄ which is meant to represent a behavior that is complementary to
that of l; synchronization of processes exercising complementary actions is then labeled
with τ , a special action symbol denoting internal activity.

In PEPA, the above operators allow for the definition of abstract models of bio-
logical networks, which can be analyzed from three different perspectives. First, it is
possible to extract ODEs corresponding to the population perspective. Second. it is
possible to extract a Continuous Time Markov Chain (CTMC) in which concentration
amounts are discretized into suitable levels to facilitate numerical solutions. This is the
abstract perspective. Finally, in the individual perspective, the CTMC is further speci-
fied so carry out finer analysis, based on the stochastic simulation.

One drawback of this original definition of PEPA is that interactions are binary,
as in the π-calculus. This poses problems when representing more complex forms of
synchronization that arise when more than two components are involved. Related with
this, another downside of PEPA is that the set of kinetic laws representable in PEPA is
also limited (mass-action kinetics). Based on these shortcomings, BioPEPA, a version
of PEPA specifically tailored for the biological context, has been proposed [18]. While
retaining the main features of the original framework, BioPEPA extends PEPA with
functional rates, which allows to represent general kinetic laws.

BioPEPA allows for model checking techniques by means of PRISM [19], a proba-
bilistic model checker. From the abstract model in BioPEPA it is possible to extract the
CTMC required by PRISM to carry out experiments based on the Continuous Stochastic
Logic (CSL).

2.2 BIOCHAM
BIOCHAM is a software environment for the description of biochemical systems. It
provides description, verification and machine learning capabilities over systems. As



for description, systems in BIOCHAM are represented by means of a simple nota-
tion based on (named) molecules, complexes (sets of molecules), modified forms of
molecules (e.g. phosphorylated ones), and genes. Notice how this is a much simpler
and concise language than the one described for PEPA (and BioPEPA). The dynamic
aspect of systems is represented via a rule based language for expressing reaction rules.
Remarkably, BIOCHAM allows for the specification of rule patterns, i.e. rules which
involve variables, and that are capable to express diverse rule instances. This is useful
for, e.g., experimenting with a system by varying some fixed set of parameters. Vari-
ables in rule patterns can be constrained with a simple set of constraints.

BIOCHAM offers a multi-semantic approach, in which models can be used to per-
form boolean, continuous or stochastic analyzes. This is done based on a simple Kripke
semantics that provides a basis for comparing models, importing features from mod-
els in different formalisms and developing automated reasoning tools. For instance,
in the boolean semantics one has a Kripke structure in which states are given by the
presence/absence of the different biochemical entities of interest, while the transition
relation is given by the defined reaction rules. Each one of these analyzes —intended
for the study of the system at different levels of detail— is supported by a different
semantic foundation.

A distinctive aspect of BIOCHAM is that it allows for the description of biologi-
cal properties as temporal specifications. These complement rule-based representations
by capturing the conditions and knowledge that are extracted from the experiments
and should hold during various experiments and changes. One can query BIOCHAM
specifications using Computation Tree Logic (CTL), and reason about reachability and
stability queries, for instance. This is useful to formalize experimental knowledge as
temporal specifications. Depending on the level of detail desired, one uses either CTL
or a version of LTL with numerical constraints. BIOCHAM is connected to a well-
established external model-checker (NuSMV) for performing relevant queries over a
model. The machine learning capabilities of BIOCHAM are intended to automatically
learn reaction rules. In fact, with the aid of techniques from inductive logic program-
ming, and given a set of counterexamples and accessibility properties, this approach
allows to discover missing reaction rules exploiting available temporal properties.

2.3 Untimed Stochastic Concurrent Constraint Programming

sCCP [7] is an untimed stochastic variant of CCP. This is obtained by adding an expo-
nentially distributed stochastic duration to all the instructions interacting with the store.
The rates are defined by functions mapping the current configuration of the store into a
real number. This makes duration of processes explicitly dependent on context. The lan-
guage is equipped with two transition relations: an instantaneous and a stochastic one.
The instantaneous transition is made finite and confluent by imposing suitable syntactic
conditions, hence the evolution of the system is given in terms of the stochastic relation.
The underlying stochastic model can be both a CTMC or a Discrete Time Markov Chain
(DTMC). There is an interpreter for the language in Prolog, exploiting the constraint
logic programming libraries of SICStus Prolog in order to manage the constraint store.
The interpreter’s engine is based on the Gillespie’s algorithm, and it allows to perform
stochastic simulations of the models.



An sCCP program consists of a list of procedure declarations and of the starting
configuration. Procedures are declared by specifying their name and their free vari-
ables, treated as formal parameters, procedure calls are to be guarded in order to avoid
instantaneous infinite recursive loops. In sCCP, only tell and ask actions have a tempo-
ral duration. A tell operation includes a constraint into the store, whereas an ask is the
basic means for querying information about the store by using the inference capabilities
associated with, both actions are performed according to their duration. These actions
can be combined together into a guarded mixed choice M . Procedure body consists of
a sequence of agents, where any agent can choose stochastically an action between sev-
eral ones (M ) or it can perform an instantaneous tell or it can declare a variable local
or it can be combined in parallel with other agents.

sCCP has been used to model two main kinds of biological systems: biochemical
reactions and gene regulation networks. In these cases, variables will represent quanti-
ties that vary over time, e.g. the number of molecules of certain chemical species. Since
sCCP is an untimed calculus and the variables are rigid, i.e., once instantiated their
value is kept forever, the variables are modeled as growing lists with an unbounded tail.
However, the lack of explicit time seems to obscure the use of reasoning capabilities
similar to the ones used in other CCP-based languages like ntcc [8]. It is not clear how
to analyze formally properties directly from a process as there is no an established re-
lationship between a logic and the calculus. Notice also that the treatment of variables
as lists makes more complex the representation of logical constraints over variables and
variations of their value over time.

The formal verification is limited to the use of the underlying stochastic models as
the logic nature of CCP is not exploited. sCCP allows for model checking techniques by
means of the probabilistic model checker PRISM. A translation procedure associates to
each sCCP program a (stochastically) equivalent one written in the language of PRISM.

3 Stochastic Behavior and Explicit Discrete Time in Concurrent
Constraint Programming

We introduce stcc, a variant of tcc in which certain processes are annotated with a
function λ, which represents the stochastic information in the language (see below).
Annotated processes are tell, when and unless. With a slight abuse of notation, in tell
and unless processes λ also stands for the constant value 1.We annotate unless as we
see it as a counterpart of when processes. A careful definition of unless in the stochastic
context, however, is yet to be completely determined. We do not discard that different
applications (e.g. biological systems and computer music) need different unless defini-
tions.

P,Q ::= tellλ(c) |X
i∈I

when ci do (Pi, λi) |P ‖ Q | local x in P |

!P | next (P ) | unlessλ c next (P )



Operational Semantics. We use the same notion of discrete time as in ntcc and tcc.
We assume that there are discrete time units of uniform size, each of them having its
own constraint store. At each time unit, some stimuli are received from the environment;
the process then executes with such stimuli as input. At the end of the time unit, some
output is produced in the form of responses to the environment, and a residual process
to be executed in the next time unit is scheduled. Information does not automatically
transfer from one time unit to the following.

The operational semantics, given in Table 1, is defined over process-store configu-
rations. We use γ, γ′ to range over configurations, and assume a structural congruence
relation ≡ to identify processes with minor syntactic differences. The rules of the se-
mantics carry both a probability value (denoted p) and a global rate value (denoted r).
They decree two kinds of process execution, immediate (probability value equal to 1
and rate value max), and stochastic. In this sense, processes can be either immediate or
stochastic. The idea of the semantics is to schedule immediate processes first, and then
move to stochastic processes, whose execution involves a certain duration.

Rules for immediate execution resemble analogous rules in tcc and ntcc. The
rule IMMTELL adds a constraint to the store as soon as possible. The rule IMMREP
specifies that process !P produces a copy P at the current time unit and then persists in
the next time unit. There is no risk of infinite behavior within a time unit. In the Rule
IMMUNLESS, process P is precluded if c is entailed by the current store d. The rule
IMMINT allows for compositional extension.

Rules for stochastic executions consider the aforementioned function λ. Using the
current store as parameter, λ describes how the global rate of the whole process varies.
We use δm(P ) to denote a delay process P with duration m: P will be executed at the
m-th time unit from the current one. Given probability and rate values for a process,
function ∆ determines its duration. The duration can be thus seen as an exponentially
distributed random variable that depends on a probability and a rate.

The rule STOTELL defines stochastic tell actions. The rule STOCHOICE defines a
choice over a number of guarded processes. Only those enabled processes, i.e., those
whose guards entail from the current store, are considered. The rule STOINT defines
the simultaneous occurrence of stochastic actions. As usual, the probability value is
calculated assuming independence of the actions. Notice that the current store is not
affected by stochastic actions; their influence is only noticeable in the following time
units. The rules STOUNLESS and STOREP define unless and stochastic replicated ac-
tions, resp. The rule NEXT extends stochastic actions to next processes. In the rule
LOCAL, local in P behaves like P , except that all the information on x produced by P
can only be seen by P and the information on x produced by other processes cannot be
seen by P . Notation (localx, c)P expresses that c is the local information produced by
process localx inP . The rule STRCONG is self-explanatory.

These rules define behavior within a time unit; internal behavior takes place until
reaching a configuration where no further computation is possible (quiescence). We
need to define the residual process to be executed in the following time unit. We start
by conjecturing that each quiescent configuration γ has a “standard” form:

γ ≡ 〈
Y
j∈J

next (Pj) ‖
Y
k∈K

unless1 ck next (Qk) ‖
Y
i∈I

δmi(Pi) ‖
Y
m∈M

X
l∈Im

when cl do (Pl, λl), d〉.



IMMTELL
〈tell1(d), c〉 −→1,max 〈skip, c ∧ d〉

IMMREP
〈P, c〉 −→1,max 〈P ′, c′〉

〈!P, c〉 −→1,max 〈P ‖ next (!P ), c′〉

IMMUNLESS
〈unless1 c next (P ), d〉 −→1,max 〈skip, d〉

if d |= c IMMINT
〈P, c〉 −→1,max 〈P ′, c′〉

〈P ‖ Q, c〉 −→1,max 〈P ′ ‖ Q, c′〉

STOTELL
〈tellλ(d), c〉 −→1,λ(c) 〈δm(tell1(d)), c〉

withm = ∆(1, λ(c))

STOCHOICE
〈
P
i∈I when ci do (Pi, λi), c〉 −→p,r 〈δm(Pj), c〉

if c |= cj

with r =
P
i∈{j | c|=cj}

λi(c); p = λj(c)/r; m = ∆(p, r).

STOINT
〈P, c〉 −→p1,r1 〈P

′, c〉 〈Q, c〉 −→p2,r2 〈Q
′, c〉

〈P ‖ Q, c〉 −→p′,r′ 〈P ′ ‖ Q′, c〉
with p′ = p1 × p2; r′ = r1 + r2.

STOUNLESS
〈unlessλ c next (P ), d〉 −→p,r 〈δm(unless1 c next (P )), d〉

withm = ∆(p, r).

STOREP
〈P, c〉 −→p,r 〈δm(P ), c′〉

〈!P, c〉 −→p,r 〈δm(P ) ‖ next (!P ), c′〉
NEXT

〈P, c〉 −→p,r 〈P ′, c〉
〈P ‖ next (Q), c〉 −→p,r 〈P ′ ‖ next (Q), c〉

LOCAL
〈P, c ∧ ∃xd〉 −→p,r 〈P ′, c′〉

〈(local x, c)P, d〉 −→p,r 〈(local x, c)P ′, d ∧ ∃xc′〉
STRCONG

γ1 −→p, r γ2

γ′1 −→p, r γ′2
ifγi ≡ γ′i (i ∈ {1, 2})

Table 1. Operational semantics: internal transition rules.

In the form above, the first three components represent processes which can perform
further only in the following time units. These are in contrast to the last component,
i.e.
∏
m∈M

∑
l∈Im when cl do (Pl, λl), which represent all the summations that did not

trigger activity within the current time unit and that will be removed in the next one.
In the following definition we use A to denote the set of delayed processes in a

quiescent configuration.

Definition 1 (Future function) Given a quiescent configuration γ, its residual process
is given by function F :

F (γ) =
∏
j∈J

Pj ‖
∏
k∈K

Qk ‖ F ′(A)

where function F ′ is defined as

F ′(δm1(P1) ‖ . . . ‖ δmn(Pn)) = G(δm1(P1)) ‖ . . . ‖ G(δmn(Pn))

and where G is defined as

G(δm(P )) =
{
δm−1(P ) if m > 1
P if m = 1.

Unlike other languages like the stochastic π-calculus [20] or sCCP [7], it is worth
noticing that in our semantics stochastic actions can evolve simultaneously; there is



no a predefined order for execution. This way, for instance, tellλ1(c1) ‖ tellλ2(c2)
evolves into δm1(tell(c1)) ‖ δm2(tell(c2)) and in the next unit time, the configuration
is δm1−1(tell(c1)) ‖ δm2−1(tell(c2)) (assuming m1,m2 > 0). This allows to naturally
represent the evolution of different components in parallel.

Discussion. Since variables in tcc are logic (i.e. they can be defined at most once in
each time unit), a potential source of inconsistencies is the simultaneous execution of
several stochastic actions involving the same variables. This could represent a limitation
in modeling. Consider for instance the kind of systems in which it is required to deal
with quantities of elements of a certain type (as in biological reactions). In such sys-
tems, variables could be part of several actions, which would represent the changes over
the elements in consideration. An inconsistency caused by two actions simultaneously
altering the value of the same variable is clearly an undesirable feature. Therefore, there
is the need for enhancing the semantics with a mechanism that imposes some kind of
order over those actions related with potential inconsistencies. This would also presup-
pose modifications over rules calculating duration of stochastic actions, as concurrent
actions would be simulated in a specific order. The formal definition of such a consis-
tency mechanism is part of ongoing work.

Also, we are currently exploring convenient ways of modeling recursive calls and
cells (i.e. variable assignments). One option, following the rationale in ntcc [8], is
to introduce some form of non-determinism. However, this is a delicate issue in the
stochastic setting: in the presence of non-determinism confluence for the operational
semantics does not seem to hold, and the extraction of underlying stochastic models
such as CTMCs or DTMCs appears more difficult. A different option is to achieve a
similar modeling using suitable combinations of parallel compositions and stochastic
choices. At present we are working on different encodings in this direction.

4 Example

In this section we illustrate our approach to model biological systems. We take the
cycle of Rho GTP-binding proteins in the context of phagocytosis as case study. We
first give a short biological description of the system and then we propose a stcc model
representing its behavior.

Biological Description. Phagocytosis is a form of endocytosis by which a cell en-
gulfs micro-organisms, large edible particles and cellular debris. The Rho GTP-binding
proteins play an important role also in phagocytosis. These proteins act on the mem-
branes of cells as molecular switches in several subcellular activities. i.e., it can be
reversibly shifted between two or more states, regulating a variety of cell function as
actin organization, cell shape and cell adhesion. In particular, Rac and Cdc42 are Rho
GTP-binding proteins participating in Phagocytosis. While Rac is responsible for the
branching structure of the actin polymerisation, Cdc42 causes the actin to polymerise
in a linear structure.

Roughly, the cycle of Rho GTP-binding proteins can be described by reflecting
how their state changes; this should consider their current bound (position) and their



interactions. Options for the positioning are at the GTP (i.e. the nucleotide Guanosine
TriPhosphate) or the GDP (i.e. the nucleotide Guanosine DiPhosphate), whereas in-
teractions can take place with either Guanine-Nucleotide Exchange factors (GEFs) or
GTPase activating proteins (GAPs). The Rho GTP-binding protein can thus shift (re-
versely) to a state at position GDP (GTP) and/or interacting with GEFs (GAPs proteins)
producing the corresponding protein complex. We model the transformations of these
proteins by using a set of chemical reactions describing their behavior. For example,
R →0.1 RT describes a shift of a protein (represented by R) into a state in which it is
GTP bounded at rate 0.1, where RT represents the resulting protein complex.

More in details, Rho GTP-binding proteins can be perceived as transmitting an in-
coming signal further to some effector in a molecular module by cycling between inac-
tive and active states, depending on being GDP or GTP bound, respectively. GDP/GTP
cycling is regulated by GEFs that promote the GDP dissociation and GTP-binding,
whereas GTPase-activating proteins (GAPs) have the opposite effect and stimulate the
hydrolysis of Rho GTP into Rho GDP. In the active GTP-bound state, Rho proteins
interact with and activate downstream effectors, e.g., to control actin polymerisation in
the context of Fc receptor mediated phagocytosis [21].

Previously, in [22] it was proposed a computational model of the Rho GTP-binding
proteins by means of ordinary differential equations. Chemical reactions underlying the
ordinary differential equations can be obtained. We follow an approach similar to that
one of [21] by modeling the different chemical reactions in our calculus.

4.1 A stcc model of the cycle of Rho GTP-binding proteins in the context of
phagocytosis

Unlike [21], in our model, we can represent each one of the chemical reactions inde-
pendently. Before entering into the detailed description of the model let us informally
describe two encodings for recursive functions and mutable entities that will allow for
cleaner model descriptions. Based on the discussion at the end of the previous section,
in the models below we shall assume suitable encodings of some form of choices for
modeling both recursive functions and mutable entities:

– We shall assume the encoding of recursive definitions of the form q(x) =def Pq ,
where q is the process name and Pq calls q only once and such a call must be within
the scope of a “next” or a delay process δm.

– Cells, a basis for the specification and analysis and persistent data structures, can
be thought of as structure that contains a value, and if tested, it yields this value. A
cell keeps its value over the time units until it is modified. We use notations x : v
and x := v to represent the initialization and the assignment of a cell c with value
v, respectively. Also, we shall use notation x := x + z as an abbreviation of the
assignment x := x′+ z, where x′ is the value of the cell x in the previous time unit
and z is fixed value. The operation x := x− z can be encoded analogously.

We now enter to describe the stcc model representing the cycle of Rho GTP-
binding proteins in phagocytosis. The model assumes a constraint system over finite do-
mains of integers. The model involves a series of persistent variables (modeled as cells)



that store the number of each protein (complex) evolved into the chemical reactions
describing the model. In general, a chemical reaction is of the form R1 + . . .+Rn →k

P1+. . .+Pm, where the n reactantsR′is (in this model, the reactants are the proteins —
or protein complexes— present at the initiation of the reaction) are transformed into the
m products P ′js (in this model, the products are the proteins —or protein complexes—
resulting from the chemical reaction). Either n or m can be equal to zero; the case
m = 0 represents a degradation reaction, while the case n = 0 represents an exter-
nal feeding of the products. Each reaction has an associated rate value k, representing
essentially its basic speed. It could be described as following:

REACTION =def unless1

n̂

i=1

(Ri > 0) next (REACTION) ‖

when
n̂

i=1

(Ri > 0) do

(

nY
i=1

Ri := Ri − 1 ‖
mY
i=1

Pi := P1 + 1 ‖ REACTION, f(k))

In the previous definition, it is checked if all the reactants are present in the system
by verifying that the quantity of each one is greater than zero, these conditions can be
seen as guards. If the guards are entailed from the current store, process REACTION
modifies the quantity of reactants and products consistently, a recursive call is made
to keep persistently the reaction as part of the model. The execution of the reaction is
subjected to f(k), the rate of the reaction, which indicates that different functions can
be used to describe the rate of the reaction from a value k. If the reactants are not present
in the system, then in the next time unit a recursive call is made. Notice that effectively
only one recursive call is made either by while or unless constructor.

Now, we shall present the chemical reactions to be modeled:

– R→0.1 RT , RT →0.02 R, R→0.033 RD, RD →0.02 R, RT →0.02 RD.
– RA →0.0085 RTA, RTA →0.0002 RA, RA →0.1 RDA, RDA →0.02 RA,
RTA→2104 RDA.

– RE →0.1 RTE, RDE →0.033 RE, RTE →0.02 RDE.
– RDA→500 RD, RA→500 R, RTE →76.8 RT , RE →0.43 R.
– RT + A→3 RTA, R + A→1 RA, R + E →0.43 RE, RD + E →0.0054

RDE

Where R denotes the Rho GTP-binding protein, whereas RD and RT denote its
GDP and GTP bound forms respectively. A and E denote GAP and GEF, respectively.
Thus, RDE, denotes the protein complex formed by RD and E, RA denotes the com-
plex formed by R and A, RTA denotes the complex formed by RT and A, RDA
denotes the complex formed by RD and A, RE denotes the complex formed by R and
E and RTE denotes the complex formed by RT and E.

Each reaction has an associated rate k, representing its basic speed. The actual rate
of the reaction is k · R1 · . . . · Rn, where Ri denotes the number of proteins (complex
proteins) of type Ri present in the system.



As an example, reactionsRT + A→3 RTA andR + A→1 RA can be modeled
as following:

REACTION1 =def unless1 (RT > 0 ∧A > 0) next (REACTION1) ‖
whenRT > 0 ∧A > 0 do

(RT := RT − 1 ‖ A := A− 1 ‖ RTA := RTA+ 1 ‖ REACTION1, RT ·A · 3)

REACTION2 =def unless1 (R > 0 ∧A > 0) next (REACTION2) ‖
whenR > 0 ∧A > 0 do

(R := R− 1 ‖ A := A− 1 ‖ RA := RA+ 1 ‖ REACTION2, R ·A · 1)

A network with these two reactions can be modeled as the corresponding parallel
composition REACTION1 ‖ REACTION2; this way we can model the whole system.

A more detailed model can capture the behavior of these proteins together with the
effectors. The binding of E to the RT results in the formation of a complex protein
consisting of RT , E and the effector protein, M denotes this complex. According to a
simplified model, the following reactions describe —to some extent— the behavior.

– RT + E →600 M , M →18 RT + E, RD +M →0.6 RT +M .

Clearly, our model can be extended just by putting in parallel the processes model-
ing the behavior of each one of the reactions above.

stcc offers two clear advantages in the modeling of this kind of systems w.r.t [21].
On the one hand, the calculus provides flexibility in the use of rates by allowing the def-
initions of arbitrary functions. In this way it is possible not only to model mass-action-
like reactions but more complex expression for the rate of the reaction, e.g. Michaelis-
Menten kinetics. On the other hand, we can extend the model in a fully compositional
way, where the extensions do not bring modifications on the rest of the model. We
think that a tool for stcc could assist in simulating experiments and models in a more
intuitive way.

5 Concluding Remarks

We have proposed stcc, an extension to tcc aimed at handling stochastic information
in the modeling and verification of reactive systems. Biological systems constitute an
important part of the systems we are interested in. Besides the example presented above,
our language and semantics could have other applications in the biological domain.
This is supported by the fact that CCP-based calculi have shown to be convenient for
modeling, simulating and verifying several kinds of biological systems [5,4,7]. Our
approach allows for the presence of both partial quantitative information at the level of
the constraint systems, the presence of functional rates and it can potentially makes use
of reasoning techniques inherited from ntcc to prove that a given process P satisfy a
given property F .

We also reviewed some languages for concurrency aimed for biological applica-
tions. One such languages is sCCP [7], which is perhaps the calculus more closely



related to ours. In our view, sCCP has several drawbacks: it does not include an explicit
notion of time and does not exploit the logic nature of CCP for verification. Also, sCCP
lacks a means of expressing absence of information, which has proven most useful in
the biological context [4]. The explicitly timed CCP language ntcc [8] provides both
a proof system and a means of representing absence of information. In fact, ntcc was
used in [5,4] to model different biological systems using two kinds of partial infor-
mation: behavioral (e.g. the unknown relative speeds on which a system evolves) and
quantitative (e.g. the set of possible values that a variable can take). It must be noticed
that ntcc does not allow for stochastic or probabilistic information.

Based on the above, we think that the extension to tcc here proposed could serve
several purposes in the biological context. The most immediate use is the definition of
enhanced models of systems already modeled in ntcc (the Sodium-Potassium pump,
regulation and mutation processes in genetic regulatory networks). Also, although it is
not evident that every sCCP process can be translated into our language (the tell oper-
ator in sCCP has continuation), we are confident we can model most of the biological
systems described in [7].
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