
Learning Constraint Satisfaction Problems: an
ILP Perspective

Luc De Raedt1, Anton Dries1, Tias Guns1, and Christian Bessiere2

1 DTAI, KU Leuven
2 CNRS, University of Montpellier

Abstract. We investigate the problem of learning constraint satisfac-
tion problems from an inductive logic programming perspective. Con-
straint satisfaction problems are the underlying basis for constraint pro-
gramming and there is a long standing interest in techniques for learning
these. Constraint satisfaction problems are often described using a rela-
tional logic, so inductive logic programming is a natural candidate for
learning such problems. So far, there is however only little work on the
intersection between learning constraint satisfaction problems and in-
ductive logic programming. In this note, we point out several similarities
and differences between the two classes of techniques and use these to
propose several interesting research challenges.

1 Introduction

Constraint programming (CP) is concerned with solving constraint satisfaction
problems (CSPs). The instance of a CSP is a constraint network p = (V, D, C),
defined by a finite set of variables V = {v1, ..., vn}; a domain D, which maps every
variable v ∈ V to a set of possible values D(v); and a finite set of constraints
C = {c1, ..., cn}, where each constraint c ∈ C essentially corresponds to a relation.
The question is to find an assignment of values to the variables so that all
constraints in the constraint network are satisfied. A commonly used example
of a CSP is that of Sudoku, where a 9x9 grid has to be filled up with numbers
such that no number occurs more than once in the same row, column and block.

CSPs can be expressed in terms of local constraints. These constraints ex-
press simple relationships between a bounded number of individual variables, for
example, v1 = v2, v3 6= v4, v5 = v6 + v7 + v8.

However, the number of local constraints in a CSP can become very large.
For example, in the case of Sudoku, we need 927 (= 36 x 27) local constraints.
CSPs are therefore often expressed in terms of global constraints, which can
represent sets of constraints. These have two main advantages: they simplify the
model by reducing the number of constraints and solvers can more easily exploit
the relationships between the constraints in the set. The standard example of
a global constraint is the alldifferent constraint. For example, the constraint
alldifferent([v1, v2, v3]) is equivalent to the set v1 6= v2, v1 6= v3, v2 6= v3. A
Sudoku can be represented by 27 such constraints. Additionally, higher level
languages for expressing CSPs (such as MiniZinc and Eclipse) offer constructs for



expressing loops (e.g., forall). Using forall constructs, a Sudoku can be expressed
as three statements, representing the constraints on rows, columns and blocks.

CSPs and constraint programming are being used in numerous applications,
for example in domains such as time-tabling, scheduling, packing, bioinformatics,
etc. However, formulating a complete CSP for an application is a non-trivial task.
It can therefore be no surprise that several researchers have tackled the problem
of learning the CSP from data [11,1,4,6].

In this article we argue that techniques from Inductive Logic Programming
(ILP) are well suited for addressing this problem. At its core, ILP is concerned
with learning a logic program (such as a CSP) given its output (such as solutions
of the CSP). We show that the representational power of ILP techniques is
capable of learning models with global constraints and higher level constructs
such as forall.

Despite the apparent similarity between learning CSPs and ILP, this rela-
tionship has so far not yet received a lot of attention, but see [11,1]. This note is
a first step towards alleviating this situation as it investigates the nature of the
relationship between learning CSPs and ILP, and uses this to point out several
interesting research directions.

2 Learning CSPs seen as an ILP problem

We will differentiate between two settings: 1) learning a single clause, and 2)
learning multiple clauses. Each setting corresponds to a different approach to
learning CSPs. The first corresponds to learning a constraint network, while the
second corresponds to learning individual constraints that together make up a
CSP.

2.1 Learning a single clause

One can see a CSP p = (V, D, C) as a single conjunctive clause of the following
form: p(v1, ..., vn) :- d(v1), ..., d(vn),

c1(vc11
, vc12

, ..., vc1r
),

...,

cm(vcm1
, vcm2

, ..., vcms
).

where V = {v1, ..., vn}, d(vx) represents the domain of vx and there are m
constraints ci, each involving a subset of the variables in V.

In this setting, learning a CSP corresponds to learning a single clause for
which vars(head) = vars(body). This is the standard learning task in ILP. The
definition of the ci ould be part of the background knowledge (for example, eq(),
nq(), lq(), ...). The goal is then to learn the definition of p(v1, ..., vn) given this
background knowledge and positive and negative examples.

Several observations can be made:

– CSPs are conjunctive descriptions and CP is heavily focussed on dealing with
conjunctions as these impose strong constraints that – unlike disjunctive
descriptions – propagate well in the search.



– vars(head) = vars(body) assumes that all variables are explicit, and no new
(auxiliary) variables are introduced by the constraints.

– The number of constraints in such CSPs can be quite large; it is typically
much larger than the typical clauses learned in ILP; cf. the simple Sudoku
example which already has 927 local constraints.

– Standard ILP systems often start from a large set of positive and negative
examples. The number of solutions to a CSP problem is often small and
it can already be hard to generate a single positive one. Therefore, several
researchers are learning CSPs from queries [6,4] and from small sets of ex-
amples ([11,3]).

Within the existing approaches to learning CSPs, the Conacq [6] and Quacq [4]
systems are state-of-the-art approaches that take this perspective.

Conacq employs a version-space like approach (Mitchell’s FIND-S algorithm
[12]). The version space is the space of all possible constraint networks that can
be built on a given set of variables with constraints belonging to a given language.
Conacq iterates over the examples to reduce the version space. The active version
of Conacq [5] asks membership queries until the version space has converged on a
single hypothesis. However, interdependencies between constraints make the test
of convergence co-NP-complete. An efficient combination of redundancy rules
given as background knowledge and of backbone tests on a clausal formulation
of the version space make the convergence test efficient in practice.

Quacq is an extension of the active version of Conacq that is able to ask partial
queries to reduce the number of queries required for convergence. Partial queries
are queries that involve only a subset of the variables of the network. Thanks
to this feature, for each example classified as negative, Quacq uses a dichotomic
search to elucidate one constraint of the constraint network with a number of
queries logarithmic in the size of the negative example.

The active version of Conacq and Quacq are particularly interesting in that
they generate queries to the user. These queries basically ask whether a substi-
tution for a set or subset of the variables in V violate the CSP or not. This allows
it to converge more rapidly. From an ILP perspective, the setting is somewhat
reminiscent of the interactive setting in Logan-H [10].

The existing approaches for learning CSPs, however, have several limitations
for which ILP techniques might help:

– To reduce the number of local constraints, one could employ global con-
straints such as alldifferent. However, the number of literals for global con-
straints that could potentially belong to the body of a clause is exponential
in the number of variables. Furthermore, there is vast number of global con-
straints that could be used (cf. the global constraint catalogue [2] which lists
>400 constraints). This leads to a prohibitive large number of candidate lit-
erals. ILP can help by structuring the search over these constraints through
the use of specialization/generalization operators.

– Typically, there are a vast number of syntactic variants in the hypothe-
ses space when inducing CSPs, and this is an unsolved problem in several



CSP learning techniques. For instance, when working with an = constraint,
symmetry and transitivity should be taken into account. In Conacq it was
shown that explicitly adding redundant rules to the background knowledge
can greatly improve performance. Possible automated solutions studied in
ILP would be to work with semantically closed rules cf. [7,9].

2.2 Learning multiple clauses

In the above setting, an important part of the problem is to find the subsets of
variables over which the constraints are active; in some cases, this also involves
an order on the variables, for example the lq() constraint. One solution is to
consider all possible combinations of variables (e.g. all pairs of variables), and
search for constraints over them. This is the typical approach taken when using
version spaces.

However, a different approach is to learn the structure imposed on the set of
variables. To see this, it is convenient to reconsider the Sudoku example in which
there are 81 variables. By organizing them into the 9x9 matrix we have already
solved a large part of the problem as the structure (a matrix) and potential global
relationships (rows/columns etc) between the variables have been identified.

Consider the following clause:

matrixdimension(X,Y ), between(I, 1, X),

selectrowvalues(I,X, Y, V alues)→ alldiff(V alues)

where matrixdimension(X,Y ) succeeds if X × Y = n, between(I, 1, X) if I ∈
{1, ..., X} and selectrowvalues would select the values corresponding to the
positions in the list. All variables in this clause are universally quantified, which
means that for range-restricted clauses, this is equivalent to learning a forall
construct.

This clause identifies both the structure (the left-hand side) as well as the
constraint (the right-hand side). It represents a subset of the constraints in the
CSP (one for each row in the example above). Learning a CSP in this setting
then corresponds to learning all of the clauses that together correspond to the
CSP. The setting closely corresponds to that pursued by the clausal discovery
systems Claudien [8]. Given positive and negative examples and background
predicates, it learns the clauses that hold on the examples. The bodies of these
clausal constraints correspond to the structure on the variables and learning
such clauses can be viewed as a form of predicate invention or a change of
representation.

Currently, two approaches exist that take this view on learning CSPs: Mod-
elSeeker [3] and Lallouet et. al [11].

ModelSeeker searches for global constraints starting from an unstructured list
of variables. For example, given the 81 Sudoku variables, it generates different
structures on the set of 81 variables and for each of these examines which global
constraints are satisfied. For instance, with 81 variables it can generate a 9 x 9
matrix, a 3 x 27 matrix, a 3 x 3 x 9 tensor, etc. The global constraints considered
are those available in the global constraint catalog [2].



Formalizing the ModelSeeker approach in a clausal discovery setting could be
realized by first storing each of the v1, ..., vn variables with corresponding values
a1, ..., an into facts val(i, ai), introducing numberofvars(n) and then defining
possible generators in the background theory.

Lallouet et. al propose an ILP approach to learning CPS rules, Constraint Prob-
lem Specification rules. They are logical rules of the form head→ body. A CPS
is not a CSP P = (V, D, C), it has to be matched to a partial solution (ground
facts), to obtain a CSP. Because its input are ground facts, it can learn from
examples of different sizes, for example n-queens for different values of n. The
data is preprocessed in such a way that learning a set of CPS rules corresponds
to learning a DNF on the negative examples. By negating the DNF, they can
convert it into a conjunction of rules (clauses). Many ILP methods can be used
to learn a DNF, however they discover that the search space is often too large for
existing techniques and hence develop a bi-directional search method. It would
be interesting to see whether techniques for directly learning CNFs (such as
Claudien [8]) can be used to learn the CPS directly.

However, despite the correspondence between clausal discovery and learning
generators and constraints, there also some significant differences:

– Unlike ILP systems, ModelSeeker does not structure the search space through
a notion of generality, but rather pursues a highly optimized and tailored
generate-and-test approach. There seems potential for approaches that com-
bine the best of both worlds.

– Modelseeker can learn from a single example.
– A vast number of global constraints is considered and generated in a specific

way that is tailored to the problem. A preference function is built-in to return
the most promising one; this is usually the most specific one that holds for
the example.

– Within the existing approaches to learning CSP, it assumed that the number
of variables that is given is fixed, which in a sense turns the CSP learning
problem into a propositional learning one. Using ILP techniques, like clausal
discovery, this restriction could easily be lifted.

– When learning CSPs, one typically considers the noise-free case. It would
however also be interesting to deal with noise. This could be related to
learning soft constraints (cf. [14]).

3 Conclusion and Future Work

We see the learning of CSPs as a modern challenge in which many of the tech-
niques and insights from ILP can play an important role. Lallouet and co [11]
have shown how standard ILP techniques can be used to solve this problem,
while Rigotti and co [1] have shown how clausal discovery methods can be used.
However, none of the proposed approach matches up to the expert driven Mod-
elSeeker [3] method.

Nevertheless, we believe that ILP-inspired approaches can extend the state-
of-the-art in CSP learning, and we have sketched approaches for doing so. We



believe that ILP can overcome some of the limitations of ModelSeeker, for ex-
ample that the generator and constraint both have to be one literal, and that a
conjunction of generators or constraints is not possible. Additionally, knowledge
about the generalisation/specialisation of generators and constraints is currently
not used during search, but only in post-processing. The ModelSeeker method
also cannot take negative examples into account, nor is able to learn from ex-
amples of different sizes (although work has been done to overcome the lat-
ter restriction [13]). Additional issues such as implications between constraints
(predicates) and redundancy have been tackled in the ILP community as well.

Many challenges remain though. The number of possible generators and con-
straints is large, leading to a huge search space. The number of examples of a
certain problem can range from one to thousands. Additionally, the constraints
can interact in many ways, including constraints that are equivalent dependent
on the parameters they have.

Acknowledgements This work was supported by the European Commission
under the project Inductive Constraint Programming (FP7- 284715).

References

1. S. Abdennadher and C. Rigotti. Automatic generation of rule-based solvers for
intensionally defined constraints. IJAIT, 11(2):283–302, 2002.

2. N. Beldiceanu, M. Carlsson, and J.-X. Rampon. Global constraint catalog. http:

//www.emn.fr/z-info/sdemasse/gccat/.
3. N. Beldiceanu and H. Simonis. A model seeker: Extracting global constraint models

from positive examples. In CP, pages 141–157. Springer, 2012.
4. C. Bessiere, R. Coletta, E. Hebrard, G. Katsirelos, N. Lazaar, N. Narodytska, C.-

G. Quimper, and T. Walsh. Constraint acquisition via partial queries. In IJCAI,
pages 475–481. AAAI Press, 2013.

5. C. Bessiere, R. Coletta, B. O’Sullivan, and M. Paulin. Query-driven constraint
acquisition. In IJCAI, pages 50–55, 2007.

6. R. Coletta, C. Bessiere, B. O’Sullivan, E. C. Freuder, S. O’Connell, and J. Quin-
queton. Semi-automatic modeling by constraint acquisition. In CP, pages 812–816.
Springer, 2003.

7. L. De Raedt. Logical and Relational Learning. Springer, 2008.
8. L. De Raedt and L. Dehaspe. Clausal discovery. ML, 26(2-3):99–146, 1997.
9. L. De Raedt and J. Ramon. Condensed representations for inductive logic pro-

gramming. KR, 4:438–446, 2004.
10. R. Khardon. Learning horn expressions with LogAn-H. In ICML, pages 471–478.

Morgan Kaufmann Publishers Inc., 2000.
11. A. Lallouet, M. Lopez, L. Martin, and C. Vrain. On learning constraint problems.

In ICTAI, pages 45–52, 2010.
12. T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning.

In IJCAI, pages 305–310. Morgan Kaufmann Publishers Inc., 1977.
13. N. Razakarison, M. Carlsson, N. Beldiceanu, and H. Simonis. GAC for a linear

inequality and an atleast constraint with an application to learning simple poly-
nomials. In SOCS. AAAI Press, AAAI Press, 2013.

14. F. Rossi and A. Sperduti. Solving and learning a tractable class of soft temporal
problems: theoretical and experimental results. JETAI, 10, 1998.

http://www.emn.fr/z-info/sdemasse/gccat/
http://www.emn.fr/z-info/sdemasse/gccat/

	Learning Constraint Satisfaction Problems: an ILP Perspective

