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Abstract. Chemical reactions always involve several molecules of two
types reactants and products. On the other hand, Quantitative Struc-
ture Activity Relationship (QSAR) methods are used to predict physic-
chemical or biological properties of individual molecules. In this arti-
cle, we propose to use Condensed Graph of Reaction (CGR) approach
merging all molecules involved in a reaction into one molecular graph.
This allows one to consider reactions as pseudo-molecules and to de-
velop QSAR models based on fragment descriptors. Here Substructure
Molecular Fragment descriptors calculated from CGRs have been used to
build quantitative models for the rate constant of SN2 reactions in water.
Three common attribute-value regression algorithms (linear regression,
support vector machine, and regression trees) have been evaluated.

1 Introduction

Quantitative Structure Activity Relationship (QSAR) consists in predicting some
chemical property given the structure of the molecule. It is an important research
area in chemistry, and a very challenging application domain for data mining.
QSAR typically deals with a single molecule. Chemical reactions usually involve
several molecules. As it is possible to predict properties of molecules, the same
should be possible with reactions. The problem is to plug several molecules,
reactants and products, in a data mining algorithm.

This article points out the use of a Condensed Graph of Reaction (CGR) to
represent a reaction involving several molecules as if it was a single molecule,
therefore allowing the use of existing techniques dealing with a single molecule.
This is illustrated on a real chemical problem.

Chemistry, in particular QSAR, is a main application domain of machine
learning and data mining. Inductive Logic Programming and Relational Data
Mining can represent and learn from complex structures such as molecules.
Moreover they can use background knowledge such as rings, generic atoms[1–4].
However to the best of our knowledge they have not been applied to chemical
reactions.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



Some papers related to data mining methods predicting properties of re-
actions have been published, but they do not really model the reaction. For
instance Brauer [5] and Katriski [6] have published papers dealing with Quan-
titative Structure Reactivity Relationship concerning only one reaction making
some parameter (such as solvent) vary. Another attempt has been proposed by
Halberstam [7] to model the rate constant of reaction involving two reactants
and one product (A +B→ C) where the second reactant (B) is always the same.
The study was then reduced to a classical QSAR on one compound.

This paper is organised as follows. The condensed graphs of reactions are
defined in section 2. Substructure Molecular Fragments are presented in section
3. The prediction of the rate constant of reaction is described in section 4. Section
5 concludes.

2 Condensed Graphs of Reactions

A Condensed Graph of Reaction [8] represents a superposition of reactants and
products graphs. A CGR is a complete connected and non oriented graph in
which each node represents an atom and each edge a bond. CGR uses both
conventional bonds (single, double, aromatic, etc.) which are not transformed
in the course of reaction, and dynamical bonds corresponding to those created,
broken or modified during the reaction (cf. figure 1).

Actually a CGR is a pseudo molecule in which some new bond types have
been added. An editor of CGR has been added to our software environment
specialised in chemical data mining: ISIDA (In SIlico Design and Analysis) [9].
Any new type of dynamical bond could be easily added in the list of bond types.

(a)

(b)

Fig. 1. A reaction (a) and the corresponding Condensed Graph of Reaction (b)



Moreover we developed an algorithm that generates a CGR from the file
formats (RXN and RD) usual in chemoinformatics to model reactions. This
programs requires the information about the atom mapping in reactants and
products. This information is often available from existing software to edit and
manage chemical data, otherwise it can be added thanks to our editor. Indeed
the key point to produce a CGR is to map the reaction, that means that each
atom on the left of the arrow corresponds to an atom on the right of the arrow.
On figure 1.(a) each atom is uniquely numbered in order to assign the same
number to the same atom on both sides of the arrow, for instance the atom
numbered 12 on figure 1.(a). Moreover, some flags are added to describe the
bonds that change, as described in the ”CTFile format” document [10] from
Elsevier MDL c©. In the case of our example reaction a ”rxn” flag is drawn
beside the created bond between the atoms mapped 6 and 12 and for the broken
bond between atoms 6 and 13.

In most of the database, the mapping is automatically done, with some errors
due to mismatching of the atoms on each side of the arrow. For our dataset, the
mapping was manually done and verified by a chemist to guarantee avoiding
mismatch. Once the reactions are correctly mapped, the CGR are created. The
algorithm consists in gathering the atoms of all the compounds of the reaction
without duplication of the mapped atom. Then the connection table of reactants
and products are examined to find the reactivity flag and write the dynamical
bond in the CGR. Figure 1.(b) shows the CGR corresponding to the reaction
above. Let us emphasize that the bond types assigned between the carbon 6 and
the brome 13 denotes a broken single bond and the bond type between carbons
6 and 12 denotes the creation of a single bond.

This change of representation allows one to store the reaction database in
the format (SD) usual in chemoinformatics to represent individual molecules.

3 Substructure Molecular Fragments

For each compound, the substructural molecular fragments (SMF) [11, 12] pro-
duce a vector of integers counting the occurrences of molecular fragments. The
nature of each descriptor is a molecular fragment, as detailed below, and its
value is the count of this fragment in a molecule.

In this paper, fragments were constructed by computing the shortest paths in
the molecular graph between two atoms -in terms of the number of nodes passed
through. The fragment is a representation of the Atoms and Bonds (AB) tra-
versed by this path. The SMF descriptors apply to the CGR. A fragment is the
shortest path between two atoms. For the reactions only fragments containing
at least one dynamical bond are selected. Some example of fragments in their
linear notation are shown in figure 2. The first example (Cl6 −S-C*C*C*C) rep-
resent the shortest path between the two marked atoms (length = 6). If several
shortest paths could be found, all of them are take into account. Symmetric frag-
ments, for example the C-C-N and N-C-C, are considered as a single descriptor.



Fig. 2. Example of Substructure Molecular Fragments applied to a Condensed Reaction
Graph

The fragmentation takes a minimum and a maximum length as parameters, for
instance (AB,2-6) means all fragments having from 2 to 6 atoms.

This kind of fragmentation produces a large number of descriptors some of
which are dependent, eg. Cl6 −S and Cl6 −S-C on figure 2. Consequently the
correlated descriptors are eliminated, using the Pearson’s correlation coefficient
(R) of each pair of descriptor and keeping only one of them (the first one). The
threshold used to determine if two descriptors are correlated is R > 0.99. Table
1 shows the number of fragments before and after attribute selection.

Fragmentation Total number Selected attributes

(AB,2-6) 2066 448
(AB,2-8) 2784 622
(AB,2-10) 4458 698

Table 1. Numbers of attributes before and after removing correlated attributes, for
three fragmentation lengths

4 Prediction of the rate constant of reaction

The data used for the computation of the rate constant comes from a compila-
tion [13] of the rate and equilibrium constants of heterolytic organic reactions.
The selected reactions concern Nucleophile Substitution 2 (SN2) water. The
database5 was manually built and contains 1014 instances described by: (i) the
reaction, (ii) the temperature represented as 1/T with T in Kelvin, (iii) the
log(k) where k is the rate constant.
5 Available on demand at Laboratoire d’Infochimie, 4 rue Blaise Pascal 67000 Stras-

bourg France. varnek-at-infochim.u-strasbg.fr



Three methods were used to model our data : (i) M5P (model tree), (ii)
SVMreg (an SVM method for regression problems) using a RBF kernel and (iii)
linear regression (LR), from WEKA [14], all with their default parameters.

The average of the Root Mean Squared Error (RMSE) and of the correlation
coefficient, using ten times a ten-fold cross-validation, for the three methods on
three fragmentations are reported in table 2.

(AB, 2-6) (AB, 2-8) (AB, 2-10)

R2 RMSE R2 RMSE R2 RMSE

SVMreg 0.52 1.27 0.53 1.26 0.53 1.26
M5P 0.47 1.33 0.5 1.30 0.47 1.33
LR 0.34 1.49 0.37 1.45 0.32 1.51

Table 2. Values of R2 and RMSE for the three methods (SVMreg, M5P, LR) associ-
ated with three fragmentation lengths (I(AB, 2-6), I(AB, 2-8), I(AB, 2-10)).

Finally CGR and SMF made possible to model the rate constant of reaction.
The best statistical results are measured for SVM (R2 = 0.53), but according
to the REC curves (not reported in this extended abstract) all the methods are
close even if R2 for linear regression is lower than the other. It is not surprising,
because the data are not linear and the other methods (SVM and M5P) are
more able to deal with non-linear problems. Tuning the fragment length has
little influence on accuracy of the prediction.

5 Conclusion

Condensed Graphs of Reactions enable any existing QSAR technique to be ap-
plied to chemical reactions. This approach has been successfully experimented
on a real chemical problem, using Substructure Molecular Fragments to generate
an attribute-value representation of the chemical reactions, and out-of-the-box
regression techniques from Weka.
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