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Abstract

Knowledge abstraction is an essential activity
of human intelligence. This paper introduces
a logic-based specialisation algorithm for re-
lational domains under uncertainty. The spe-
cialisation algorithm takes a pair of existen-
tially quantified conjunctions of first-order
literals and computes a most general speciali-
sation of the pair by adopting Plotkin’s least
general generalisation algorithm. The rep-
resentation and specialisation algorithm pro-
vide a natural way to upgrade non-relational
probabilistic models to relational probabilis-
tic models.

1. Introduction

Knowledge abstraction is an essential activity of hu-
man intelligence. Inductive Logic Programming (ILP)
shows that first-order logic based abstractions can be
achieved not only by generalisation but also by special-
isation (Nienhuys-Cheng & de Wolf, 1997). In Statis-
tical Relational Learning (SRL) much work has been
done mainly from a generalisation point of view. More
studies need for characterising SRL from a specialisa-
tion point of view.

The aim of the present paper is to introduce a logic-
based specialisation algorithm for relational domains
under uncertainty. The specialisation algorithm takes
a pair of existentially quantified conjunctions of first-
order literals and computes a most general speciali-
sation of the pair by adopting Plotkin’s least general
generalisation algorithm (Plotkin, 1971). In this pa-
per, we apply such a specialisation algorithm for learn-
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Figure 1. A sequence of plays: a Nought won case
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Figure 2. Relations between grids of the game board

ing from relational dynamic world. Since we also anal-
yse the computational complexity of our specialisation
algorithm, the results of this study could be useful
for non-relational probabilistic reasoning communities
with large data.

2. Representing Observations in
Relational Domain

A natural way to express observations in dynamic re-
lational world is to capture the world in a sequence of
snapshots. Each snapshot can contain relations whose
truth value may change in a different snapshot. For ex-
ample, let us consider a sequence of plays in Noughts
and Crosses (or Tic Tac Toe) domain as shown in Fig-
ure 1. Assume that we introduce the three relations
as shown in Figure 2. In Figure 1, the fourth board
contains the following set of four relations:
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Figure 3. A sequence of plays: a draw case

{corner(1,p0), corner(2,p2), corner(1,p8),
opposed (p0,p8)}

in which (a) p0,p2 and p8 express the locations of the
grids (Figure 2 (4)) and (b) “nought” and “cross” are
expressed as 1 and 2 respectively.

These observed relations can be expressed in a con-
junction of literals. For example, the fourth snapshot
can be represented in the following conjunction.

Fy, @ corner(1,p0) A corner(2,p2) A corner(1, p8)A
opposed(p0, p8)

3. Specialising Sequences of Snapshots

In the previous section, we propose a representation of
the snapshot in a conjunction of literals. Our interest
is to develop a simple but general approach to find
common patterns between a pair of snapshots. Let
us assume we observe another sequence of plays which
results a draw as shown in Figure 3. The fourth boards
in Figure 3 can be expressed as follows.

F> @ corner(l,p2) A face(2,pl) A corner(1, p6)A
opposed(p2, p6)

An obvious common strategy on the fourth boards in
Figure 1 and Figure 3 is “a nought is newly placed at
the opposed corner of the existing nought”. Can we
extract such knowledge from F; and Fy?

Our approach is to compute most general special-
isation (mgs) of a pair of conjunctions of literals.
The knowledge representation we introduced in the
previous section is a ground case of an existentially
quantified conjunction of literal (ECOL). Now we
define our Machine Learning task as follows.

Given: A pair of ECOLs, (F;, F}).
Find: Most general specialisation of (F;, Fj).

To the best of our knowledge, mgs of a pair of
ECOLs has not been studied in ILP although it is a
natural representation of observations.

Figure 4. Subsumption Order for Negated Knowledge

4. Theoretical Analysis

We show lgg(F,, F}) is the msg of the given ECOLSs
in this section. First of all, let us review the 6-
subsumption order between two clauses briefly. We
represent a clause, l; V ... V [, as a set of literals,
{li,--;lm}. 6-subsumption order is introduced as
follow.

Definition: §-Subsumption Order
Let C and D be clauses. If there exist substitution
0 such that C C D, C is more general than D,
C »¢ D, under §-subsumption order.

Let F,, and Fj be ECOLs. We define a new generality
order >3 between F, and Fj.

Definition: e-Subsumption Order
Let F, and F be ECOLs. e-Subsumption Order, >3,
is defined associated with F, and F} as follows.

def

F,-sF, = F,0CF

The following theorem shows a relation between the
Plotkin’s 6 subsumption order and our existential
subsumption order.

Theorem 1: f-subsumption and e-subsumption
Given two clauses C' and D, let C and D be the
negated C' and D respectively. Then

CryDeC=<3D.

Proof. It is clear that both C' and D are ECOLs. Re-
garding C' =y D = C <3 D, we assume there exists a
substitution 8 such that

C6 C D. (1)
Now our aim is to show

DoccC (2)



from (1). Figure 4 shows a general Venn diagram of
the models of C' and D where C' = C;UC5. The Figure
shows that (2) holds iff C is empty. Here, C; should
be empty from (1). Regarding C >y D « C =<3 D,
our aim is to show (1) from (2). Now C; is empty
because of (2). Then (1) is always true. O

Theorem 2 (Most General Specialisation of a pair of
ECOLs)

Given two ECOLs F, and Fj, there exists the most
general specialisation of Fj, and Fy.

Proof. Let Fom be some ECOL such that

Fa tEI Fcam and Fb EEI Fcom

From the above Theorem 1, this can be stated as fol-
lows.

Fa j@ Fcom Fb jO Fcom

Note that Fa, Fcom, and F are all clauses now. As
Plotkin shows (Plotkin, 1971), there exist the least
general generalisation of F', and F.

Fa j@ lgg(Faaﬁb) j@ Fcom
Fb jO lgg(ﬁaaﬁb) jG Fcam
The above two formulae are equivalent with

Fa tEi lgg(Fa;Fb) tEI Fcom

Fb tEl lgg(FCL;Fb) tEl Fcom

where lgg(F,, Fy) is the most general specialisation of
F, and F, in ECOL. O

The above proof shows that the following algorithm
computes the most general specialisation of the pair
of ECOLs.

MGS(F,,F)
Input: a pair of ECOLs (Fy, F})
Output: Most General Specialisation of F, and Fp
1: Compute the negations of F, and F;, F, and
Fy.
2: Take lgg of F, and Fy, lgg(F., F)
3: Logicaly negate the result of the 1gg,
lgg(F,, Fy) and output it.
4: Exit.

For example, mgs of F; and F; can be calculated as

Fy - AXYZ
Nopposed(X,Y)

whereas the mgs of the ECOLs for the third snapshots
in Figure 1 and Figure 3 can be computed as follows.

Fy : 3XY corner(1,X) A corner(Y, p2)

An abstracted snapshot, Fy, can be interpreted as

e a nought is placed at one corner and

e there is some mark at p2.
Then a state transition happens from Fj to F3 where

e two noughts are placed at opposed corners and

e something is placed at p2.

In F3 we could find that a nought is newly placed at
the opposite corner of the existing nought.

5. Conclusions

In this paper, the new specialisation algorithm for
a pair of ECOLs is presented. This algorithm has
been implemented in a PILP system, called Cellist, for
learning logically extended Probabilistic Automata,
Probabilistic Logic Automata (PLA) (Watanabe &
Muggleton, 2009; Watanabe, 2009). Since ECOL is a
natural representation for describing a set of relations,
it should be straight forward to extend non-relational
probabilistic models to relational probabilistic mod-
els. PLA is such a case; Probabilistic Automata is
extended to PLA by simply embedding ECOL into
a node in Probabilistic Automata. We expect this
ECOL based specialisation approach smoothly bridges
ILP and existing non-relational probabilistic models.
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