
Lifted Optimization for Relational Preference Rules

Ronen I. Brafman brafman@cs.bgu.ac.il

Dept. of Computer Science, Ben-Gurion University, Israel

Yagil Engel yagile@ie.technion.ac.il

Dept. of Industrial Engineering and Management, Technion, Israel

Abstract

We present an optimization method for re-
lational preference rules. Our optimization
does not require explicit enumeration of the
ground rules and thus avoids exponential de-
pendency on the number of objects.

1. Preference Rules

The move to relational probabilistic models from
propositional models stemmed from the realization
that the type of knowledge we have and need in many
domains is at a level more generic than that of concrete
objects. In reasoning about preference, too, often we
have knowledge about the desirable behavior or state
of a system of agents/objects, that applies to different
instantiations of this system, while instantiations may
differ in the number and properties of concrete objects.

As an example, imagine the problem of monitoring
emergency services in a large city. Our objects are
fire-fighters, fire-engines, fire-events, injured civilians,
and various devices that help us monitor the state
of this system, such as cameras and other mounted
and stationary sensors. These instruments transmit
huge amounts of data to a control center, and our sys-
tem must decide which information (e.g., which video
streams) to display to a decision-maker monitoring this
system at each point in time. As the set of objects
and their properties change overtime (e.g., as new fire
events occur), the logic behind what is desirable and
what is less desirable can (and must) be described at a
generic level, so that it will apply to different concrete
instances of such a monitoring system.

In (Brafman, 2008) we proposed relational prefer-
ence rules (RPR) as a formalism for modeling pref-

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

erence/value information about such a system. RPRs
are similar in form to existing PRMs, such as Bayesian
Logic (Kersting & Raedt, 2007), Relational Bayesian
Networks (Jaeger, 1997), and Markov Logic (Richard-
son & Domingos, 2006), and can be viewed as rela-
tional UCP networks (Boutilier et al., 2001), which
induce a GAI value function over any given set of ob-
jects. We illustrate the basics of this formalism here,
and refer the reader to (Brafman, 2008) for more de-
tails. In this paper we concentrate on lifted inference
for relational preference rules which turns out to be
quite different from lifted probabilistic inference.

For the purpose of designing preference rules, we adopt
an object oriented world model. Objects are instances
of certain object classes. A set of attributes is asso-
ciated with every instance of every class. The value
of these attributes may be of a simple type, such as
integers, reals, strings, or an object class. However, in
this paper we adopt a more constrained model in which
an attribute cannot refer to an object. Attributes are
separated into two classes: controllable and uncontrol-
lable. The uncontrollable attributes can be viewed as
specifying the context in which we operate. However,
in this abstract we ignore them for the most part.

We define preference rules to have the syntax:

rule-body → rule-head : 〈(v1, w1), . . . , (vk, wk)〉

Where rule-body has the following form:

class1(x1) ∧ . . . ∧ classk(xk) ∧ α1 ∧ . . . ∧ αm

and αi has the form: xi.attr REL value or
xi.attri REL xj .attrj . Each xi must appear earlier
within a classj(xi) element. REL denotes a relational
operator such as =, 6=, >,< etc.

The rule-head has the form xj .attr where xj .attr de-
notes a controllable attribute. 〈(v1, w1), . . . , (vk, wk)〉
is a list of pairs, where vi denotes a possible value
of the attribute in rule-head, and wi is a real-valued
weight. For example, the following rule expresses the

Lifted Optimization for Relational Preference Rules

fact that viewing the stream generated by a fireman
in a location of a fire has value 4:

fireman(x) ∧ fire(y) ∧ x.location = y.location
→ x.camera-display : 〈(“on”,4),(“off”,0)〉.

Every set of concrete objects induces a set of ground
rules: A ground rule instance is obtained by assigning
a concrete object from the appropriate class to the rule
parameters. Thus, given a rule

class1(x1) ∧ . . . ∧ classk(xk) ∧ α1 ∧ . . . ∧ αm →
α 〈(v1, w1), . . . , (vk, wk)〉

and an assignment of objects o1, . . . , ok to parameters
x1, . . . , xk from appropriate classes (i.e., oi belongs to
classi), we obtain a ground rule instance of the form:

α′1 ∧ . . . ∧ α′m → α′ 〈(v1, w1), . . . , (vk, wk)〉

where α′i is obtained from αi by replacing each xj by
the corresponding oj , and similarly for α′.

A given set of preference rules and a concrete set of ob-
jects induce a value function over the different possible
assignments to the controllable attributes of these ob-
jects. The value of any particular assignment is simply
the sum of values associated with these objects under
this assignment. That is, we sum up all the weights
w associated with ground rules r such that: (1) r is
a ground instance of some rule induced by this set of
objects; (2) the body of r is satisfied by the attribute
values of the relevant objects; (3) the value of the at-
tribute at the head of r according to this assignment
is v and r associates weight w with the value v.

Our main computational task given a rule-base R and
a set of objects O with a given assignment to their un-
controllable attributes is to find an assignment to the
controllable attributes that is optimal. The straight-
forward way to do that is by creating all the ground
instances of the rules, and evaluating different possible
assignments with respect to this set of ground rules.
Unfortunately, the optimization domain’s size is expo-
nential in the number of objects per class, multiplied
by the number of attribute per class. Although some
improvements can be made at the level of the ground
representation (e.g., the use of variable elimination to
solve this maximization problem), this is a prohibitive
factor. The motivation for this work is hence to solve
this problem without explicit grounded enumeration.

2. Lifted Optimization

In most cases, the value of a complete assignment does
not depend on which ground object got which assign-
ment for its attributes, but rather on how many of

them were given each assignment. That is, in the
case of an additive model such as ours, what mat-
ters is how many times each rule was fired with a cer-
tain value. This property can be leveraged to perform
the optimization in the lifted (first-order) rule level,
without ever creating the explicit set of corresponding
grounded rules.

For the purpose of optimization we slightly transform
the syntax of the rules, taking it closer to that of
Markov Logic. Each rule with a head α is replaced
with a set of rules, one for each weighted value vi of
α. The predicate α = vi is added to the body of each
new rule, whose weight is wi. Each rule r ∈ R is now
a simple conjunction of predicates with one weight wr.

For simplicity, assume first that there is single class
of objects C with a single attribute A with domain
c1, . . . , cd. Hence, any instance of class C falls into
one of d types, distinguished by their attribute value.
Let us further assume a single rule r with weight w
that contains a single parameter. Thus, whether or
not an object of class C causes r to fire depends only
on the value of its attribute A. The total weight of a
particular assignment of values to N objects of class
C depends only on Nj , for j = 1, . . . , d, the number
of object instances for which A = cj . Specifically, the
value of an assignment would be

w ·
d∑

j=1

1A=cj causes r to fire Nj .

Given m rules r1, . . . , rm with respective weights
w1, . . . , wm, and a single parameter each, the
value of an assignment would be

∑m
k=1 wk ·∑d

j=1 1A=cj causes rk to fire Nj .

Next, consider a rule r with two parameters, x and
x′. Let SAT (r) refer to pairs of values to A, one for
x and one for x′, that together cause r to fire. Now
the number of times the rule will fire is the number of
pairs of object instances that satisfy this rule:

w ·
d∑

j=1

d∑
k=1

1(cj ,ck)∈SAT (r)Nj ·Nk.

For example, if the rule fires when the two parameters
are assigned objects with the same attribute value, we
would get w ·

∑d
j=1N

2
j .

More generally, we can express the value of any as-
signment in terms of a function that depends on some
constants (the rule weights) and the number of object
instances from each complete object profile, where by
a complete profile we mean a vector of the values as-
signed to each attribute of the object. In order to find

Lifted Optimization for Relational Preference Rules

the optimal assignment we optimize over all possible
such counts, under the capacity constraint of the class,
meaning that the counts per class sum up to the num-
ber of objects in the class.

This computation avoids exponential dependence in
the number of objects, but requires a number of vari-
ables which is exponential in the number of attributes
per class (one counter for each complete object pro-
file). Therefore, the size of the optimization domain
is double exponential in this term. We next show
how this complexity can be improved significantly—
intuitively, by avoiding the enumeration of assign-
ments that do not satisfy any rule.

2.1. Direct Counting of Satisfying Assignments

Let Ci denote a class, and let CLr(x) denote the class
of parameter x in rule r. For each parameter r.x (indi-
cating parameter x within rule r), we define a counter
nr.x which indicates the number of objects of CLr(x)
that satisfy the predicates involving x in r. Assume
that all the predicates are of the form x.Ai = v, that
is no predicate involves multiple parameters (we show
in the tech report how to lift this restriction1). The
number of times r is triggered is now simply

∏
xi
nr.xi

,
where the product is over parameters appearing in r.

In the previous scheme we applied simple capacity
constraints to ensure that the size of each class is re-
spected. We cannot use similar constraints here, be-
cause the summation over all the counters nr.x of a
class need not be bounded by the number of objects in
the class. The reason is that the same object can sat-
isfy several rules. For example, assume that the pred-
icates of the three parameters r.x, r′.x′, and r′′.x′′ are
not contradicting, that is they can all be satisfied by
a given object. The constraint nr.x +nr′.x′ +nr′′.x′′ =
|Ci| is too constraining, because for example objects
that satisfy both r.x and r′.x′ are counted twice.

In order to avoid double counting, we define a counter
nr.x,r′.x′ that counts the number of objects that satisfy
the first two parameters, and similarly for the other
two pairs, leading to a constraint nr.x +nr′.x′ +nr′′.x′′−
nr.x,r′.x′ − nr.x,r′′.x′′ − nr′.x′,r′′.x′′ = |Ci|. Unfortu-
nately, objects that satisfy all three parameters are
now reduced three times, whereas the original count
over-counted them only twice. We therefore define a
counter for the three-way intersection and add it to the
count. This leads to terms formed as the inclusion–
exclusion counting form of set theory. We pose such a
constraint for each maximal clique of related parame-
ters, that is parameters referring to mutual attributes.

1http://ie.technion.ac.il/~yagile/prefRules.pdf

We propose to solve the resulting constraint optimiza-
tion problem using the well-known variable elimina-
tion technique, which employs a graph whose nodes
represent counters, and two counters are connected
by an edge if they relate via a rule or via mutual at-
tributes. This graph captures the structure of both the
objective function and the constraints. The optimiza-
tion solution includes a value for each counter, which
can be translated efficiently to a complete ground as-
signment. For details and performance analysis we
refer to the technical report.

2.2. Offline Computation

Often, the set of objects in the system changes over-
time, and hence this optimization problem has to be
solved online; potentially causing a delay that is visible
to the user. Fortunately, we can generate an approxi-
mation to the optimal assignment using an offline com-
putation, that is independent of the number of objects
per class. The idea is that we can replace the explicit
counting variables with ratio variables, which indicate
the portion of class objects that take each assignment.
The offline problem is a continuous optimization prob-
lem with multilinear objective function and linear con-
straints. Several algorithms have been introduced for
this problem (see De Campos and Cozman (2004) for
a survey). While not polynomial, branch and bound
methods perform reasonably well if the degree of the
product is not too large. In our case the degree is the
number of parameters per rule, which we assume to
be a small constant. Online, we scale the optimal frac-
tional values by the number of objects in each class and
round them. The (scaled) fractional solution’s value is
an upper bound on the optimal value, hence the differ-
ence between the values of the fractional and integer
solution bounds the quality of the latter.

References

Boutilier, C., Bacchus, F., & Brafman, R. I. (2001). UCP-
networks: A directed graphical representation of condi-
tional utilities. UAI.

Brafman, R. I. (2008). Relational preference rules for con-
trol. KR.

De Campos, C. P., & Cozman, F. G. (2004). Inference in
credal networks using multilinear programming. Starting
AI Researcher Symposium.

Jaeger, M. (1997). Relational Bayesian networks. UAI.

Kersting, K., & Raedt, L. D. (2007). An introduction to
statistical relational learning. MIT Press.

Richardson, M., & Domingos, P. (2006). Markov logic net-
works. Machine Learning, 62, 107–136.

