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Abstract

There has been a considerable amount of re-
search on statistical relational learning (SRL)
during the past decade, much of it focusing
on generalised probabilistic logics . SRL for-
malisms are typically based on Bayesian or
Markov networks. Chain graphs (CGs) gen-
eralise both acyclic directed graph (ADG)
models, i.e., Bayesian networks, and undi-
rected graph (UG) models, i.e., Markov net-
works, as they may contain both undirected
and directed edges. As a consequence they
constitute an attractive point of departure for
SRL. In this paper, we start with a logical
generalisation of chain graphs, called chain

logic, to elaborate a method for learning the
parameters of chain logic theories.

1. Chain Logic

1.1. The Language

Chain logic is a variant of probabilistic Horn logic as
introduced by Poole in (Poole, 1993) augmented with
integrity constraints (Ferreira et al., 2008). The lan-
guage consists of a special variant of function-free Horn
logic, where the syntax of Horn clauses is slightly mod-
ified, and logical implication, ‘←’, is given a causal
interpretation. The clauses have the following form:

D ← B1, . . . , Bn : R1, . . . , Rm

where the predicates of the atoms D and Bi are at
least unary and the atoms Rj , called templates, ex-
press relationships among variables, where at least one
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variable appearing in the atoms D and Bi occurs in at
least one template Rj . From a logical point of view,
the ‘:’ operator has the meaning of a conjunction; it is
only included in the syntax to allow separating atoms
that are templates from non-template atoms. In chain
logic, the templates are interpreted as representing un-
certain events. The actual definition of the uncertainty
is done by means of a weight declaration. This is of
the form

weight(a1 : w1, . . . , an : wn) (1)

where ai represents an atom and wi ∈ R
+
0 . The set

of (ground) atoms appearing in such declarations are
here called the assumables, denoted by A. All other
ground atoms are called observables, denoted by O.
Furthermore, we define a hypothesis as a conjunction
of assumables, each of them occurring exactly once in
a grounded weight declaration. The set of all such hy-
potheses is called H. The set of consistent hypotheses,
with respect to a chain logic theory T will be denoted
by CH, i.e., CH = {H ∈ H | T ∪H 2 ⊥}.

Reasoning can be done by means of abduction: given a
set of observed atoms O ⊆ O, then these observations
are explained in terms of the theory and an hypothesis.

Definition 1. An explanation of a set of atoms O
based on the pair 〈T,A〉 is defined as an hypothesis

H ∈ H satisfying the following conditions:

• T ∪H � O, and

• T ∪H is consistent, i.e., T ∪H 2 ⊥.

A minimal explanation of O is an explanation whose
proper subsets are not explanations of O. The set of
all minimal explanations is denoted by ET (O).

Assumptions are imposed on chain logic theories, such
that the clauses are acyclic, covering, mutually ex-
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clusive, and consistent. We define a joint probabil-
ity distribution over the assumables such that each
assumable is independent, i.e., joint probabilities can
be easily calculated by multiplication and subsequent
normalisation. As a result, we have a probability dis-
tribution associated to hypotheses and explanations.
Furthermore, under the assumptions mentioned above
we derive a joint distribution PT over the observables:
if ET (O) is the set of minimal explanations of the con-
junction of atoms O ⊆ O from the chain logic theory
T , then:

PT (O) =
∑

H∈ET (O)

P (H) (2)

1.2. Representing Chain Graphs

A chain graph G = (V, E) is a graph with arcs (di-
rected edges) and lines (undirected edges), such that
there is no cycle in that graph that includes at least
one arc (Lauritzen, 1996). A chain component is a
connected component if all the arcs are removed from
the graph; the set of all chain components is denoted
by C. Associated to a chain graph is a joint probability
distribution P (XV ) that factorises according to

P (XV ) =
∏

C∈C

P (XC | Xpa(C)) (3)

where pa(C) denotes the set of parents of C. Each
P (XC | Xpa(C)) factorises according to

P (XC | Xpa(C)) = Z−1
∏

M∈M(C)

ϕM (XM ) (4)

where Z−1 is a normalising constant and M(C) is the
complete set in the moral graph obtained from the sub-
graph GC∪pa(C) of G. The functions ϕ are real pos-
itive functions, called potentials, defined over cliques,
i.e., maximal complete subgraphs of C; they generalise
joint probability distributions in the sense that they
need not be normalised. Finally, given two cliques, K
and K ′, in an undirected graph, we call S a separator
set iff S = K ∩K ′.

Reasoning in chain logic can be identified with reason-
ing in the associated CGs: let T be a chain logic theory
with ground atoms Vi(ci) and let vi be the vertices in
the corresponding (discrete) CGs, then:

PT (V1(c1), . . . , Vn(cn)) = P (Xv1
= c1, . . . , Xvn

= cn)

2. Learning Chain Graph Parameters

Where observables and assumables make up the core of
chain logic, determining the probabilistic parameters

of assumables using observations stored in a database
D is one of the essential task of learning in chain logic.

In general, it is not possible to easily estimate the po-
tentials from data as they might have a complex de-
pendency to the rest of the graph. However, if the
individual components are triangulated, the factorisa-
tion can be stated in terms of marginal probabilities
over the variables in a clique.

The proposed algorithm for determining the parame-
ters is inspired by the use of a junction tree for proba-
bilistic inference as junction trees provide sufficient in-
formation about the interactions between assumables,
i.e., when they influence the same observables. Junc-
tions trees, with required properties such as the run-
ning intersection property, are only guaranteed to ex-
ist when the graph is triangulated, so we restrict our-
selves to this case. As a convenience we write NO with
O ⊆ O for the number of tuples of D that contain O.

The learning procedure is described in Algorithm 1.
It will first identify possible effects of assumables
(Effect) and to which it has an indirect relation (Rel),
which can be used to build up a junction tree, where
variables are instantiated for a particular value. From
this, weights of the assumables can be learned. The
properties of junction trees ensure that joint distribu-
tion corresponds to the relative frequency of observ-
ables, i.e., we have the following, general, result.

Given a chain logic theory T with associated
(moralised, triangulated) chain graph G and database
D, then after running Algorithm 1, the resulting
weight declaration and T will be such that:

PT (O) =
NO

N∅

(5)

for all possible observations O ⊆ O.

To illustrate this, suppose we have the following chain
graph network:

ABC

D

The chain logic program is:

A(x)←: ϕA(x)
B(x)← A(y) : ϕBA(x, y), ϕBD(x, z)
C(x)← B(y) : ϕCB(x, y)
D(y)←: ϕBD(x, y)
⊥ ←: ϕBA(x, y), ϕBD(x̄, z)

According to the Algorithm 1, the following graph can
be constructed (here shown with quantified variables):
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Algorithm 1 learn CL parameters

Require: chain logic theory T , assumables A, observables O, database D
for a ∈ A do

Effect(a)← {o ∈ O | ∃H ∈ CH : T ∪H |= o and T ∪ (H \ {a}) 6|= o}
Rel(a)← {o ∈ O | ∀H ∈ CH: a ∈ H and T ∪H |= Effect(a) implies T ∪H |= o}

end for

JG← junction graph with nodes A and separators Rel(a) ∩ Rel(a′) between adjacent nodes a and a′

J ← spanning tree of maximal weight of JG, where the weight of an edge is the cardinality of its separator
DJ← any directed tree of J
for a ∈ A do

let S be the union of separators of a with its parents in DJ
weight(a)← NEffect(a)∪S/NS

end for

ϕA(x)

ϕBA(y, x)

ϕBD(y, z) ϕCB(v, y)

A(x)

B(y) B(y)

B(y)

A tree can be obtained from this graph by removing
any of the edges from the loop in the undirected graph.
In fact, it does not matter which one to choose as, if
there is a loop, then the separators are all the same set
of variables. Equation 5 implies that for chain logic it
is irrelevant which one is chosen, but some are more
closely related to the original graph as others. For
example, if we take ϕA(x) as a root, then ϕBA(y, x)
is a conditional probability, as in the original graph.
If, on the other hand we take ϕA(x) as a leaf, then its
weight will be 1 and thus ϕBA(y, x) will be the joint

probability of A and B, given its parent.

For obtaining the interpretation of the original graph,
choose DJ as the directed tree such that there is an
arc from a to a′ iff

s(a, a′) ∈ Effect(a) and s(a, a′) 6∈ Effect(a′)

where s(a, a′) denotes Rel(a) ∩ Rel(a′), i.e., whenever
an assumable a′ does not explain an observable it is
related to, which means it must be conditioned on this
observation. For triangulated chain graphs, such a tree
exists. In the example above, we thus take the tree
with arrows between ϕA and ϕBA, and between ϕBA

and ϕCB , giving, e.g., the following tree:

ϕA(x)

ϕBA(y, x)

ϕBD(y, z) ϕCB(v, y)

A(x)

B(y) B(y)

The learning algorithm will then, e.g., learn that:
ϕCB(x, y) = N{C(x),B(y)}/NB(y) which corresponds to
exactly the relative frequencies associated to variables
in the original chain graph, illustrating the relation
between the two formalisms for learning. Relational
domains can be represented, and thus learned about
using the same machinery, when it is ensured that the
underlying graph is characterised by the class of trian-
gulated chain graphs.
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