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1. Introduction

An anomaly is a data point that deviates dramatically
from some set of related data points, based on some
common metric. For instance, consider the flights
shown in Table 1. In this table, flights 2 and 5 are
anomalous because their flying time is much longer
than the average even though the set of airports is
similar. While there is significant research on finding
anomalous records within data sources (e.g. (Lane &
Brodley, 1999; Steinwart et al., 2005), we are unaware
of research on explaining why those anomalous data
points are actually anomalous (beyond their deviance
from the “standard” value for the metric). Generating
these explanations is the focus of this paper.

Table 1. Example flights (anomalies shown in bold)
Flights

id origin destination flying time
1 LAX SFO 1h
2 LBO OAK 9h
3 LAX SFO 1.1h
4 LAX SFO 1.2h
5 LAX OAK 9.3h
6 LAX SFO 1.2h

This paper presents our initial work on automati-
cally generating a layered, multivariate explanation for
anomalies. Given a set of anomalous records, such as
Flights 2 and 5 from Table 1, an “anomaly explana-
tion” is defined as a model that describes the variables
common to the anomalous records and how they relate
to each other. This model functions as a hypothesis for
describing the anomalous group. For instance, using
the anomalous flights of Table 1, an anomaly explana-
tion models the notion that long flight times depend
on the flight destination, which in turn depends on the
flight’s origin, as shown in Figure 1. As we will show,
our approach leverages outside data sources to increase
the richness of the features to consider in the model,
and so we consider it “multivariate.” Further, as we
show, our approach supports drilling down into this
explanation, yielding detailed explanations for specific
subsets of the anomalous group. Therefore, we con-
sider it a “layered” model. We note that while we fo-
cus on anomalous groups of data for this paper, since
those groups generate useful and interesting explana-
tions, our technique will generalize to any coherent
(non-random) group of data. As long as the records
are coherently grouped our technique should generate
an explanation.

As mentioned above, sometimes the initial data is not
rich enough to form reasonable explanation models.

Figure 1. An example anomaly explanation model

In this case, outside knowledge can be incorporated
by linking extra information to the data, yielding a
“multivariate” model that incorporates features from
disjoint sources. These richer, outside features help
generate more detailed explanations. For example, we
might link in detailed information about each flight
by joining a flight registry source with the flight data,
generating the new records shown in Table 2. By ap-
pending information such as the type of aircraft and
the operating company, we generate a more detailed
model, shown in Figure 2. This model shows that
the deviant flights also depend on the type of aircraft,
which is slower, and that these slow aircraft are used
to fly to certain destinations.

Table 2. Example flights (anomalies shown in bold)
Flights

id origin destination flying time aircraft type top speed
1 LAX SFO 1h 747 650kts
2 LBO OAK 9h Prop 250kts
3 LAX SFO 1.1h 747 650kts
4 LAX SFO 1.2h 747 675kts
5 LAX OAK 9.3h Prop 225kts
6 LAX SFO 1.2h 747 650kts

Finally, an anomaly explanation such as Figure 2 func-
tions at a high-level because it models the factors that
determine the whole set of anomalies. However, we
also want to drill into subsets of the anomalies and ex-
plain them in finer detail. For instance, although Fig-
ure 2 explains the anomalies of Table 2, other flights
that are also anomalous because of their long flight
time (not shown) may also fit this model. However,
these flights might have slightly different features from
the example Flights 2 and 5. Therefore, we further re-
fine the explanation, grouping Flights 2 and 5 together
because they share both a rare destination (“OAK”)
and use a rare “Prop” plane that is slow. Our ap-
proach generates these finer grained explanations for
subsets of the anomalies, which is why we consider our
method as “layered.”

The rest of this paper is as follows. Section 2 describes
our initial work on generating layered, multivariate
anomaly explanations. Section 3 presents initial re-
sults, conclusions, and future directions for this work.
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Figure 2. A richer anomaly explanation model

2. Layered, multivariate explanations

As stated in the introduction, given a set of anoma-
lous records, ai ∈ A, our goal is to generate a lay-
ered, multivariate explanation in the form of a model.
Our approach breaks into three distinct phases. First,
our algorithm incorporate as much outside knowledge
as possible to generate an explanation using as rich
a feature space as possible. Second, an actual model
is generated from the feature space built by the first
step. Finally, we cluster together the anomalies based
on how well they fit various parts of the model, provid-
ing a finer grained explanation of how the anomalies
fit the explanation.

Therefore, the first step is to join together the anoma-
lous records with other outside sources of information.
As stated, we start with anomalies a ∈ A, where a is a
record composed of fields f1 . . . fm. We also maintain a
list of outside sources Si, each of which contains other
fields oi1 . . . oin, and a mechanism for joining together
records in A with each outside source Si (denoted ./
for fj ∈ A = ox ∈ Si). The result of this first step is a
new view over the set of joined data:

A′ = ∀iA ./ Si

An example is given in Table 2.

Next, our algorithm takes the richer set of data in A′,
and generates a Bayes Net hypothesis for the records1.
This Bayes Net functions as our multivariate, anomaly
explanation such as that shown in Figure 2. A Bayes
Net model is advantageous for a number of reasons.
First, it compactly models which attributes are com-
mon to the set of anomalies A′, and also how the at-
tributes relate to each other. These relations are de-
pendencies which is particularly useful for interpreting
their interplay. We do note, however, that building a
Bayes net assumes that the data points in the subset
are i.i.d. , which is not necessarily the case, especially
when joining records across sources. We realize this is
a shortcoming of our method, and hope to overcome
this assumption in our future research.

A second, and important, advantage of a Bayes Net
is that it provides an intuitive mathematical model
of the anomaly explanation. That is, we can gener-
ate a Markov factorization for a Bayes Net, yielding a
probabilistic formula for fitting anomalies in A′ to the
generated explanation. Given a Bayes Net with nodes
X,Y ,Z, the Markov factorization is:

1We use the Bayes Net Power Constructor(Cheng et al.,
1998) which allows for efficient generation and conditional
independence testing

P (X = x, Y = y, Z = x) =
∏

P (v|parents(v))

The Markov factorization not only provides a fit for
each anomaly to the explanation, it also provides a
way in which to cluster subsets of the anomalies into
groups that fit particular parts of the Bayes Net sim-
ilarly. These subsets yield the finer grained explana-
tions sought by our layered approach. In some sense,
the Bayes Net functions as feature selection, narrowing
the search space of similarities amongst the anomalies,
while the clustering of the Markov factorization yields
the actual fine grained explanations.

The factorization is a probability distribution for each
part of the hypothesis explanation. Therefore, we can
compare the factorizations of any two anomalies ax
and ay by computing the Kullback-Leibler divergence
(DKL) between their factorized pieces. For probability
distributions P and Q, DKL is defined as:

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

Since DKL is neither symmetric, nor necessarily non-
negative, we instead use a modified version of the dis-
tance, known as Jensen-Shannon Divergence (DJS):

DJS(P ||Q) =
DKL(P ||M)

2
+

DkL(Q||M)
2

Where M = 1/2(P + Q).

To cluster our subset members using the Markov fac-
torization and DJS , we build a fully connected graph
where the nodes are the records in A′, and the edge
weights are the DJS scores between all nodes. Nodes
are clustered together if their edge weight is greater
than a threshold, such that resulting clusters represent
sets of nodes that fit the various parts of the explana-
tion similarly. Examining the factorized pieces of the
explanation, for each cluster, generates finer grained
explanations. For example, we would see that since
Flights 2 and 5 of Table 2 both share a rare airport
and flight type, and so they would share a low diver-
gence score (high similarity). Therefore, we can give
a finer explanation for these records based on the at-
tributes common to their cluster.

Overall, our algorithm for discovering layered, multi-
variate anomaly explanations is given by Figure 3.

3. Conclusions and Future Work
Our approach is still in its initial investigation. As
such, we don’t yet have our full empirical results to
test our approach to generating anomaly explanations.
In fact, deciding how to empirically test our approach
could prove to be challenging. However, we do have
some encouraging anecdotal results. Our study uses
an initial 48,629 flights culled from the FlightAware
flight tracking service. Each initial flight record has
attributes such as the origin airport and destination
airport, along with numeric data such as planned flight
time, actual flight time, etc. To build multivariate
explanations, we join this flight data with data from
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Figure 3. Generating layered, multivariate explanations

the FAA Flight Registry to augment the records with
attributes such as the type of plane used, the company
that operates the plane, etc.

Company Name

Aircraft Accessory 
Category

Origin State

Destination StatePlanned Altitude

Company Name

Aircraft Category
Origin State

Planned Speed 
(Mach)

Aircraft Accessory 
Category

Destination State
Planned Altitude

(a) Flights with a planned flight duration > 2.57σ

(b) Flights with an arrival delay > 2.57σ

Figure 4. Generated anomaly explanations

To generate sets of anomalies to explain, we compute
the z-score for each numeric attribute in the original
flight data, and consider all flights whose z-score is
greater than or less than 2.57 as anomalies (Assuming
a normal distribution motivates our choice of 2.57).
Note that we treat anomalies separately depending on
whether they are above or below the z-score, since they
are likely to be distinct (that is, very slow flights are
different anomalies than very fast flights).

Figures 4 shows two of the generated Bayes net expla-
nations for different sets of anomalous flights. The ex-
planation for (a) describes flights whose planned fight
time is deviant, while (b) describes flights who arrived
much later than other flights. From the picture, we
see that flights that planned an abnormally long flight
time depended on such attributes as where they are fly-
ing to, which depends on where they are flying from,
and how high they intend to fly, which depends on
how fast they want to go. It is intuitive that flights
that plan to take a long time will make such a decision

based on where they are going and how fast they plan
to get there. It is also interesting that the type of plane
is so important (defined by both the aircraft category
and the accessories, which further subdivide the plane
types), and that the company flying the plane is such
a factor. This is because certain companies will fly
certain types of planes at rarer altitudes (with respect
to other companies flying other types of planes).This
explanation is multivariate because it uses attributes
from the flight registry. The explanation for late arriv-
ing flights (shown in (b)), again suggests that the route
is important, as well as how high the plane can fly. It
couples this information with the companies and the
types of planes, so there is some correlation between
companies flying certain planes and arriving late.

We also generated the clusters for the anomalous
flights of (a) and (b) above. As stated, the clus-
ters serve as more detailed explanations for subsets
of the anomalies. For the flights of (a) in the figure
above, we found clusters such as flights that share a
same rare company and plane (e.g. a low value for
P(aircraftcategory|companyname)), while other clus-
ters group around a commonly occurring destination
and origin pair. For the flights of (b) we again see clus-
ters such as planes that share a rare origin and destina-
tion, or those that share a common origin and destina-
tion. Although anecdotal thus far, and though space
prohibits speaking about each cluster found, our ap-
proach does generate clusters that give more detailed
and intuitive explanations for anomalous flights.

Although our initial results are encouraging, this
is still early work. In the near future we plan to
examine more advanced clustering techniques, and
also perform rigorous empirical testing. Also, we must
explicitly deal with the fact that our multivariate
data points in the subset are not i.i.d.
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