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Abstract

Lifted first-order probabilistic inference,
which manipulates first-order representations
directly, has been receiving increasing atten-
tion. To date, all lifted inference methods
require a model to be shattered against it-
self and evidence (that is, splitting groups of
variables until they are all composed of vari-
ables with the exact same properties), before
inference starts. In many situations this pro-
duces a new model that is not far from propo-
sitionalized, therefore canceling the benefits
of lifted inference. We present an algorithm,
Anytime Lifted Belief Propagation, that cor-
responds to this intuition by performing shat-
tering during belief propagation inference, on
an as-needed basis, starting on the most rel-
evant parts of a model first. The trade-off
is having an (exact) bound (an interval) on
the query’s belief rather than an exact belief.
Bounds are useful when approximate answers
are sufficient and, in decision-making appli-
cations, can even be enough to determine the
decision that would be picked from the exact
belief. Moreover, the bounds can be made
to converge to the exact solution as infer-
ence and shattering converge to the entire
model. Interestingly, this algorithm mirrors
theorem-proving, helping to close the gap be-
tween probabilistic and logic inference.
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1. Introduction

First-order probabilistic models are specified with po-
tential or conditional probability templates parame-
terized by logical variables. Following Poole (2003),
we call these templates parfactors, for parameterized
factors. Two examples of parfactors are

φ(p(X), q(X,Y ))
P (advises(Prof ,St)|ta for(St, Prof)),St 6= john,

where φ and P stand for potential and conditional
probability functions that apply to each instantiation
of the parameterized random variables (atoms) by the
quantified typed logical variables X,Y,St and Prof .
Logical variables often have constraints on them (here,
with equality formulas only). The semantics of a set
of parfactors is the graphical model formed by their
instantiations satisfying their constraints.

Lifted inference on first-order probabilistic models
(that is, inference that manipulates and keeps the
first-order structure, avoiding extensive proposition-
alization) has been receiving increasing attention re-
cently (Poole, 2003; de Salvo Braz et al., 2007; Milch
et al., 2008; Singla & Domingos, 2008). To date,
all lifted inference methods require a model to be
shattered against itself and evidence, before inference
starts. Shattering means dividing the random vari-
ables of the model into clusters of exactly symmetric
variables, that is, variables with the same probabilis-
tic statements on them and their neighbors and there-
fore exhibiting identical behavior. Evidence is often
provided at the level of random variables on specific
individuals, typically causing all random variables in-
volving them to form singleton clusters. For many
problems this is very close to propositionalization, and
the gains from lifted inference are greatly decreased.
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The reason shattering is needed in advance is because
the algorithms that have been lifted (belief propaga-
tion and variable elimination) do require the entire
model in order to compute a query’s belief. So in
general the entire model needs to be used, requiring
it to be entirely shattered. However recent work on
box propagation (Mooij & Kappen, 2008) shows how
to derive bounds on beliefs from using only a portion
of a model. This allows us to gradually shatter the
model while obtaining useful bounds on the query. In-
terestingly, this also corresponds to the intuition that
reasoning only consider sub- or individual cases in an
as-needed basis, as it is done in theorem proving where
unification and resolution are gradually used.

We present an algorithm that corresponds to this in-
tuition by performing lifted belief propagation (Singla
& Domingos, 2008), but shattering the model during
belief propagation inference, starting on the most rel-
evant parts of a model first. The method uses box
propagation to provide an (exact) bound, that is, an
interval guaranteed to contain the query’s belief rather
than an exact belief. Bounds are useful when only an
approximate answer is needed, or when beliefs are used
for supporting decisions. In the latter, they may suf-
fice for determining the decision that would be picked
from the exact beliefs. Moreover, the bounds can be
made to converge to the exact belief as inference and
shattering proceed to include the entire model.

Interestingly, this algorithm mirrors logic theorem
proving. In fact, when parfactors are hard constraints,
it reduces to theorem proving. Moreover, the closer
they are to hard constraints, the closer the behavior
of the algorithm is to theorem proving. This has sev-
eral advantages. It shows that the algorithm is viable
even if much of a model is purely logic; helps clos-
ing the gap between probabilistic and logic inference;
and produces higher-level, more intelligible reasoning
traces akin to proof trees.

2. The Algorithm

Our algorithm is a combination of box propagation
(Mooij & Kappen, 2008), and lifted belief propagation
(BP) (Singla & Domingos, 2008).
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Figure 1. Box propagation on a binary variables network.

Box propagation (shown in Fig. 1 on a factor network)
works by considering only a subset S of the model that
is increasingly expanded from the query outwards (ev-
idence is represented by factors with potential zero on
assignments inconsistent with it). At every step from
(b) to (d), factors are included in the set so as to com-
plete some random variable’s blanket (we do not show
the expansions from (d) to (e), however, only their
consequences). We include the table for factor φ1 but
omit the tables for other factors. For simplicity, this
paper uses binary variables only, but all algorithms in
it can work with multi-valued variables.

When a blanket of a variable V is completed, the
messages coming to new factors from outside S are
bounded by [0, 1], and a bound on V is calculated by
considering these input message bounds. The result-
ing bound is then propagated all the way to the query,
narrowing the bound on its belief. Thus this is an any-
time algorithm since a bound on the query is always
available and becoming narrower as processing contin-
ues. A bound is computed by simply considering the
extremes of input bounds and recording the extreme
values of the output of the potential function (for fac-
tor nodes) or their product (for variable nodes). Af-
ter enough expansions (either by including all factors
or by using enough of them), we converge to 0-width
bounds with exact messages, as in (e). Note that the
algorithm works for loopy belief propagation by creat-
ing new nodes for variables and factors when they are
found more than once, creating an unrolled network.

Lifted belief propagation is based on the idea that sym-
metric variables (that is, variables with exactly the
same set of dependencies) will receive and generate the
same belief messages. It determines these sets (called
supernodes) by shattering as a pre-processing step, and
performs message passing between them.

Anytime Lifted BP works by using only a subset of the
model for box propagation, but with supernodes, as in
Lifted BP. Shattering is performed only as it is needed
for accommodating the parfactors brought it at each
step, thus minimizing it. Figure 2 shows a detailed
example. We do not write the algorithm in detail due
to space restrictions.

Box propagation carries with it the need for updating
a message bound out of a node when one of its input
message bounds is updated. This makes its applica-
tion to first-order probabilistic models even more sig-
nificant, since they are typically specified with highly
regular potential functions based on logical formulas or
aggregation functions, which have linear, rather than
exponential, update costs (we omit details).
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hasGoodOffer 
(mary) 

gdFor(mary,J), 
J in {a,b,c} 

offer(J,mary), J in 
{a,b,c} 

hasGdOffer(P), 
P!=mary 

goodFor(P,J),P!=mary 

offer(J,P),P!=mary 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J not 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offer(J,mary), J not in 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cityPerson(mary) 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goodEmp(J), 
J 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J 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J 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J in {a,c} 

involves(Subj,J), 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J 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Below, P, J and S are of type Person, Job and Subject. 
hasGoodOffer(P) <- offer(J,P),goodFor(P,J). 
0.7: goodFor(P,J) <- cityPerson(P),inCity(J). 
0.8: goodFor(P,J) <- goodEmployer(J) 
0.8: goodFor(P,J)<- involves(S,J),likes(S,P). 
0.6: goodEmployer(J) <- in(S,J),profitable(S). 
0.6: likes(S,P)<- takesTeamWork(S),social(P). 
... <many more parfactors> 
0.8: offer(mary,J), J in {a,b,c}. 
not offer(mary,J), J not in {a,b,c}. 
0.8: goodEmployer(J), J in {a,c}. 
social(mary). 0.7: involves(ai,a). 
likes(theory,frank). inCity(c). ... <and more> 
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of 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Key 

(Pot: Alpha) <- Beta. 
has potential: 
 Pot, if Beta and Alpha are true, 
 (1-Potential), if Beta is true 
              and Alpha is false,  
  0.5, otherwise. 
Pot: Alpha. is defined as 
Pot: Alpha <- True. 
Optional constraint restricts 
instantiations. Pot is 1 if omitted. 

0.8: 
offer(mary,J), 
J in {a,b,c}. 

hasGoodOffer(P) <- offer(J,P),goodFor(P,J). 
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Figure 2. An example of Anytime Lifted BP in action. Note how all jobs, then later a, b and c, and still later only a and
c, are grouped together at several stages, even though their random variables are not symmetric in the complete model.
This model would be completely grounded by regular lifted inference. Once we reach the parfactors indicating that both
a and c are likely to have made offers to Mary and to be good employers, the bound on her having a good offer becomes
narrow, without examining many other facts that also bear influence on it. Doing so would close the gap. Note that
the parfactor specification notation is irrelevant to the algorithm, which applies to other representations such as MLNs
(Singla & Domingos, 2008).

3. Conclusion

We presented an algorithm that performs lifted first-
order probabilistic inference without shattering the en-
tire model in advance. This allows for faster useful in-
ference when bounds are enough (such as for decision-
making). Importantly, it allows us to treat classes of
random variables as a group even when they are not
exactly symmetric; in other words, it allows us to rea-
son in general about objects that are only approxi-
mately symmetric, where the notion of approximation
becomes more restricted the more precise an answer
is required. When objects in the model are hypothe-
ses in a learning problem, then the decision-making
scenario naturally brings up a type of active learning
where the most relevant data is sought first. An in-
teresting extension in that direction would be making
the algorithm consider the cost of obtaining evidence
or sharper bounds on certain variables. The algorithm
also mirrors theorem proving, helping to close the gap
between logic and probabilistic reasoning.
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