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Abstract

There is an ongoing effort to design efficient
lifted inference algorithms for first-order proba-
bilistic models. This paper focuses on directed
first-order models that require an aggregation op-
erator when a parent random variable is parame-
terized by logical variables that are not present in
a child random variable. We describe our work
on extending Milch et al.’s C-FOVE lifted infer-
ence algorithm with efficient lifted aggregation
procedures.

1. Introduction
Representations that mix graphical models and first-order
logic—called either first-order or relational probabilistic
models—are becoming increasingly popular (Getoor &
Taskar, 2007; De Raedt et al., 2008). In these mod-
els, random variables are parameterized by individuals be-
longing to a population. Even for very simple first-order
models, inference at the propositional level—that is, in-
ference that explicitly considers every individual—is in-
tractable. The idea behind lifted inference is to carry out
as much inference as possible without propositionalizing.
An exact lifted inference procedure for first-order proba-
bilistic directed models was originally proposed by Poole
(2003). It was later extended to a broader range of prob-
lems by de Salvo Braz et al. (2007). Further work by Milch
et al. (2008) expanded the scope of lifted inference and
resulted in the C-FOVE algorithm, which is currently the
state of the art in exact lifted inference.

While early work on lifted probabilistic inference by Poole
(2003) considered directed models, the later work
by de Salvo Braz et al. (2007) and Milch et al. (2008)
focused on undirected models. Although their results can
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also be used for directed models, one aspect that arises ex-
clusively in directed models is the need for aggregation
which occurs when a parent random variable is parame-
terized by logical variables that are not present in a child
random variable. In this paper we give an overview of our
work (Kisyński & Poole, 2009) on incorporating efficient
lifted aggregation procedures into the C-FOVE algorithm.

2. Aggregation in first-order probabilistic
models

A population is a set of individuals. A population corre-
sponds to a domain in logic. A parameter corresponds to
a logical variable and is typed with a population. A sub-
stitution is of the form {X1/t1. . . . ,Xk/tk}, where the Xi are
distinct parameters, and each term ti is a parameter typed
with a population or a constant denoting an individual from
a population. A ground substitution is a substitution, where
each ti is a constant. A parameterized random variable is
of the form f (t1, . . . , tk), where f is a functor (either a func-
tion symbol or a predicate symbol) and ti are terms. Each
functor has a set of values called the range of the functor.
A parameterized random variable f (t1, . . . , tk) represents a
set of random variables, one for each possible ground sub-
stitution to all of its parameters. The range of the func-
tor of the parameterized random variable is the domain of
random variables represented by the parameterized random
variable. The idea of parameterized belief networks is sim-
ilar to the notion of plates (Buntine, 1994); we use plates
notation in our figures.

In a directed first-order probabilistic model, when a child
parameterized random variable has a parent parameter-
ized random variable with extra parameters, in the corre-
sponding propositional model the child variable has an un-
bounded number of parents (see Figure 1). We need some
aggregation operator to describe how the child variable de-
pends on the parent variable.

We want to satisfy two conditions: (1) the length of a rep-
resentation of the aggregation in the model should be inde-



Lifted Aggregation in Directed First-order Probabilistic Models

parent(x1)

FIRST-ORDER PROPOSITIONAL

{x1, x2, . . . , xn}

parent(X) parent(xn)parent(x2)

child() child()

Figure 1. Directed first-order probabilistic model and its equiva-
lent belief network.

pendent of the sizes of involved populations; (2) the time
complexity of aggregation during lifted inference should be
at most linear, and preferably logarithmic, in the size of the
population of the extra parameter in the parent variable.

The first condition assures that one will be able to fully
specify a model, that is, its structure and the accompanying
probability distributions, before knowing the individuals in
the modeled domain. This means in particular that, even
though we might not know the sizes of the populations, we
still should be able to specify the model.

Following (Zhang & Poole, 1996), we assume that the
range of the parent variable is a subset of the range of the
child variable, and choose to use a commutative and asso-
ciative deterministic binary operator over the range of the
child variable as an aggregation operator ⊗. Given proba-
bilistic input to the parent variable, we can construct any
causal independence model covered by the definition of
causal independence from (Zhang & Poole, 1996), which
in turn covers common causal independence models such
as noisy-OR (Pearl, 1986) and noisy-MAX (Díez, 1993) as
special cases. In other words, this allows any causal inde-
pendence model to act as underlying mechanism for aggre-
gation in directed first-order probabilistic models.

3. Aggregation during lifted inference
The C-FOVE algorithm operates on data structures called
parfactors (Poole, 2003). Parfactors are used to store sets
of initial conditional probability distributions as well as in-
termediate results of the inference. In (Kisyński & Poole,
2009) we added data structures called aggregation parfac-
tors together with a set of inference procedures operating
on aggregation parfactors to C-FOVE. Aggregation parfac-
tors use deterministic binary operators (see Section 2) to
represent intentionally aggregation relationships between
parameterized random variables. The size of the aggre-
gation parfactors is independent of the populations sizes.
They can be used during the modeling phase and then, dur-
ing inference with C-FOVE algorithm, once populations

are known, they can be translated to parfactors on count-
ing formulas (Milch et al., 2008). Such a solution allows us
to take advantage of the modeling properties of aggregation
parfactors and C-FOVE inference capabilities. A lifted ver-
sion of factorization of Díez and Galán (2003) can translate
aggregation parfactors based on MIN or MAX operators to
parfactors that do not contain counting formulas.

prt(x1) prt(x2) prt(x3) prt(x4)
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⊗

⊗
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Figure 2. Decomposition of the aggregation.

In many cases, inference can also be preformed directly
with the use of aggregation parfactors. This reduces the
polynomial time complexity (in the size of the population
of the extra parameter) of previously available lifted infer-
ence methods to logarithmic complexity. In particular, effi-
ciency gains are achieved during elimination of parent pa-
rameterized random variable. Aggregation can be decom-
posed into a binary tree of applications of the aggregation
operator. Figure 2 illustrates this for a case where n, the
size of the population of the extra parameter, is a power
of two. The results at each level of the tree are identical.
When a parent parameterized random variable represents a
set of random variables that can be treated as independent
(we may need to delay conditioning on observations and
elimination of some variables to keep them independent),
we can eliminate parent parameterized random variable us-
ing a square-and-multiply method (Piṅgala, 200BC) whose
time complexity is logarithmic in the population size of the
extra parameter.

4. Empirical test
In the following experiment, we investigated how the pop-
ulation size of parameters affects inference in the presence
of aggregation. We compared the performance of variable
elimination (VE) (Zhang & Poole, 1994), variable elimi-
nation with noisy-OR factorization (Díez & Galán, 2003)
(VE-FCT), C-FOVE, C-FOVE with lifted factorization of
Díez and Galán (2003) (C-FOVE-FCT), and C-FOVE with
aggregation parfactors (AC-FOVE). We used Java imple-
mentations of the above algorithms on an Intel Core 2 Duo
2.66GHz processor with 1024MB of memory made avail-
able to the JVM.
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Figure 3. Performance on the smoking-friendship model.

For our test we used a directed first-order model from (Car-
bonetto et al., 2009) that explains how people alter their
smoking habits within their social network. Given the pop-
ulation size n, the equivalent propositional graphical model
has 3n2 + n nodes and 12n2−9n arcs. We varied n from 2
to 200 and for each value, we computed a marginal proba-
bility of a single individual being a smoker. Figure 3 shows
the results of the experiment. VE, VE-FCT and C-FOVE
algorithms failed to solve instances with the population size
greater than 8, 10, and 11, respectively. The C-FOVE-FCT
and AC-FOVE algorithms performed the best and were
able to handle efficiently much larger instances (up to the
population size equal to 158). Both algorithms at one point
could use counting elimination (de Salvo Braz et al., 2007),
while C-FOVE was forced to propositionalize. It is impor-
tant to remember that C-FOVE-FTC can only be applied to
MAX and MIN-based aggregation.

5. Related work
All directed first-order probabilistic formalisms include
some, more or less sophisticated, forms of aggregation.
Jaeger (2002) provides in-depth analysis of issues related
to aggregation. Our inference algorithm can handle a sub-
set of aggregation operators presented in his work.

Previous work on lifted probabilistic inference didn’t ad-
dress aggregation explicitly; however counting formulas of
Milch et al. (2008) can be used to represent aggregation.
The length of the representation of counting formulas de-
pends on the population size, therefore they are not very
well suited for specifying aggregation in relational proba-
bilistic models. Inference performed during empirical tests
described in Section 4 involved counting formulas, but not
in the context of aggregation.

6. Future work
While presented the algorithm can handle a wide range of
aggregation cases, there still exist models that can’t be han-
dled efficiently by lifted inference, for example a “lattice”

structure shown in (Poole, 2008). These models pose an
interesting challenge for future research.
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