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Abstract

Examples of latent-class relational models have
found much use in key areas such as recom-
mender systems and social network analysis,
where hidden group information about domain
individuals can help improve predictive accuracy.
Fitting such models, however, is generally infea-
sible due to the large number of latent quanti-
ties that must be inferred, necessitating approxi-
mate inference techniques. In this work, we show
how an instance of Neal and Hinton’sincremen-
tal EM algorithm can be derived for fitting latent-
class relational models tractably. Empirical eval-
uations show good accuracy of models learned
with the proposed algorithm in social networks
and movie rating domains.

1. Latent-class Relational Models

Latent-class relational models (LRM) are lifted models of
relational data that model non-observable class member-
ship of individuals in addition to the observable relation-
ships amongst individuals. Examples of LRMs, e.g. (Xu
et al., 2006; Kemp et al., 2006), have found much use in
modelling complex relational domains. Fitting LRMs to
data generally require approximate inference, and in this
work we show how this task can be addressed in a sim-
ple way using theincremental EM framework of Neal and
Hinton (1998).

Relational domains that LRMs model are characterised
by a collection of sets of objects/individualsO =
{O1, . . . , Om} and a set of relationsR = {r1 . . . rn} de-
fined over elements ofO. A relationr ∈ R is defined as
r : D1 × . . . × Dk → {v1, . . . , v|r|}, wherek is the ar-
ity of r, D1 . . . Dk ∈ O, and there are|r| truth values of
r represented byv1, . . . , v|r|. A simple example may be
the binary movie-rating relationlikes : User ×Movie →
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{true, false}, whereUser,Movie denote the set of user
and movies respectively, andlikes(x, y) can be true or
false for each user-movie pair(x, y).

For a given relational domain, the LRM includes each
r ∈ R and assigns an accompanying parameterθr to char-
acterise the distribution over values ofr. For each ob-
ject domainD ∈ O, a unary latent relation1 hD : D →
{c1, . . . cgD

} is introduced, and accompanied by parame-
ter θhD

. gD represents the number of latent classes/groups
that elements ofD can belong to, and is itself a random
quantity, probabilistically distributed overZ

+.

The grounding of an LRM can be seen as a directed graph-
ical model whose nodes represent instantiations of all ob-
served and latent relations. Each observed node repre-
senting some ground relation has latent parents matching
individuals the ground relation implicates. For example,
r(x′, y′) wherex′ ∈ X, y′ ∈ Y has latent parentshX(x′)
andhY (y′). Parameter-sharing is assumed for all instances
of the same relation. Latent class parametersg(·) are par-
ents of the ground instances of latent relations and their
parameters. For a simple example domain whereO =
{X,Y } andR = {r} wherer : X × Y → {v1, . . . , v|r|},
Fig. 1 illustrates the corresponding LRM using plate nota-
tion.
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Figure 1.The LRM for a domain consisting of a single relationr

over domainsX andY .

Our LRM description can be seen as an alternative descrip-
tion of the LRMs proposed in (Kemp et al., 2006; Xu et al.,
2006), although we define the distribution over the number

1Only unary latent relations are considered, representing latent
class membership of individuals. Latent relations of higher arity
are beyond the scope of this work.
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of latent classes is defined parametrically instead of via the
Chinese Restaurant Process as in (Kemp et al., 2006; Xu
et al., 2006).

2. Incremental EM for LRMs

Estimating parameters of an LRM using the conven-
tional approach of EM (expectation-maximisation, Demp-
ster et al. (1977)) in general incurs an intractable expecta-
tion step. However, it turns out thatincremental EM due to
Neal and Hinton (1998) represents an appropriate and sim-
ple approximate algorithm for this task (we shall useiEM
for short). In the remainder, we assume a simpler LRM
with fixed gD for all D ∈ O and focus oniEM’s ability to
find good LRM parameters.

Like EM, an iEM iteration consists of an expectation (E)
step followed by the maximisation (M) step. In the E step,
the marginal posterior is computed for each latent variable
z whilst fixing all other latent variablesz′ 6= z to their pre-
viously calculated distributions. Given the marginal poste-
riors from the E step, the M step sets model parameters to
maximises the expected-likelihood of data with respect to
the distributions obtained in the E step.

The applicability ofiEM for LRMs becomes evident by ob-
serving that the marginal probability of a variable is depen-
dent on itsMarkov blanket only, when all latent variables
in the model have fixed distributions. In other words, sta-
tistical influences external of the Markov blanket are effec-
tively blocked. As such, expensive global marginalisation
that renders expected-likelihood intractable is replacedby
efficient local marginalisation.

The Markov blanket approximation results in a factorised
expected-likelihood of data. To see this, first we define
some notation. LetY be a set of random variables, where
each element represents an observed instance (ground rela-
tion) of a relationr ∈ R. (Non-observed cases can be omit-
ted directly via the “missing at random” assumption.) Sim-
ilarly, let Z denote the set of latent variables corresponding
to ground instances of the latent relations.

For someX ∈ {Y,Z}, let Bo(X) ⊆ Y andBl(X) ⊆ Z

be the observed and latent variables in the Markov blan-
ket of X, and b0(X), bl(X) the corresponding instantia-
tions. Given the observationY = y, factorisation of the
expected-likelihood is shown as follows

L(θ) = log
∑

z

P (y, z|θ)

≈ log
∏

y′∈y

∑

bl(y′)

P (y′, bo(y
′), bl(y

′), θ)
(1)

Similarly, the original variational lower-bound of Eq. (1)

L (θ) ≥
∑

z

q (z) log P (y, z|θ) −
∑

z

q (z) log q (z) (2)

(where q is the unknown marginal distribution of latent
variables) becomes

L̃ (θ) ≥
∑

y′∈y

∑

bl(y′)

q (bl(y
′)) log P (y′, bo(y

′), bl(y
′)|θ)

−
∑

y′∈y

∑

bl(y′)

q (bl(y
′)) log q (bl(y

′))

(3)
As shown here, theiEM provides us a variational approxi-
mation by rendering the intractable entropy term in Eq. (2)
tractable (3).

The E step ofiEM computes theapproximate marginal
posterior of each latent variableZ ′ ∈ Z according to

P (z′|y, θ(t)) ≈
∑

bl(z′)

P
(

z′, bl(z
′)|bo(z

′), θ(t−1)
)

(4)

where superscriptt is the iteration index. The new pos-
teriors yields a new bound (Eq. (3)), and in the M step
new LRMs parameters are chosen to maximise this bound.
For any relationr : D1 × . . . × Dk → {v1, . . . , v|r|} (la-

tent or observed), the new parameterθ
(t+1)
r [u,g] is the

conditional probability thatr = u given H = g, where
H = {hD1

, . . . , hDk
}, andg = {g1, . . . , gk} is a vector

instantiation ofH. Let yr be the observations ofr, then
θ
(t+1)
r [u,g] is updated according to

θ(t+1)
r [u,g] =

N(r = u ∧ H = g)

N(H = g)

=

∑

yj∈yr

P
(

yj = u|yr, θ
(t)

)

w
(t)
j

∑

yj∈yr

w
(t)
j

(5)

N(·) denotes expected counts. Asyj represents the value

of some ground relationr(a1, . . . , ak), w
(t)
j is the weight

of caseyj given by

w
(t)
j =

k
∏

i=1

P (hDi
(ai) = gi|bo(hDi

(ai)), θ
(t−1)) (6)

where the terms in the product are derived from the E step.
For latent relations, allw(t)

j = 1, andyr is replaced with a
vector of posterior probabilities (from the E step).

Convergence ofiEM is assured as shown by Neal and Hin-
ton (1998). The complexity each inference made in the E
step depends on the size of the Markov blanket and method
of inference. Assuming an exact inference algorithm, for
each of theq individuals a posterior calculation is done that
is proportional to thet observed ground relations the indi-
vidual participates in, and the size of the conditional prob-
ability table for each relation (call thisd). The E step com-
plexity is thenO(q · t · d). Note thatd is exponential in
the number of parents, but is independent of the number of
individuals and observations.
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3. Experiments

Here we validate the performance ofiEM procedure for
finding accurate LRM parameters. For benchmarking pur-
poses, we also use the Infinite Relational Model (IRM)
of Kemp et al. (2006) in our experiments, trained using
MCMC.

Social Networks – We use a collection small social net-
works from UCINet2. Each social network models one re-
lationship type between individuals of a single object do-
main. We perform leave-one-out validated prediction per-
formance (up to a maximum of 200 cases) and report the
log-loss. In these trials, theiEM is run with 10 random
restarts with the best outcome returned, with cluster vari-
able size (g(·)) nominally set to 2, we thus call itiEM(2).
Default learning parameters are used for the IRM. The fol-
lowing results (Table 1) were obtained with margins indi-
cating standard error. These results indicate a general ad-

Table 1.Leave-One-Out validated log-loss and standard error for
iEM(2) and IRM on 15 social networks from UCINet. Lower
values indicate better performance.

Data iEM(2) IRM
bkfratb 0.9454104 ± 0.043 1.000722 ± 0.0003

bkhamb 0.6196214 ± 0.070 1.010833 ± 0.0009

bkoffb 0.9239662 ± 0.043 1.002303 ± 0.0005

bktecb 0.8649078 ± 0.039 1.002473 ± 0.0005

kapfmu 0.8070652 ± 0.051 1.011978 ± 0.0014

kapfmm 0.6822585 ± 0.060 1.008061 ± 0.0008

kapfts1 0.6864323 ± 0.052 1.005166 ± 0.0006

kapfts2 0.8116041 ± 0.041 1.002140 ± 0.0004

szcid 1.013652 ± 0.005 1.000696 ± 0.0013

szcig 0.8957450 ± 0.039 1.002208 ± 0.0008

taro 0.6247031 ± 0.058 1.032004 ± 0.0024

thurm 0.8842990 ± 0.042 1.000356 ± 0.0014

wolfn 0.9345817 ± 0.034 1.002101 ± 0.0006

zachc 0.5264381 ± 0.065 1.004338 ± 0.0010

zache 0.5523457 ± 0.065 1.002961 ± 0.0009

vantage towards theiEM(2), which may be attributed to the
fact iEM is a soft-clustering method whilst the IRM per-
forms hard-clustering. Particularly in the case where IRM
finds few clusters, e.g. in ’taro’, the cluster structure is less
predictive of the relation.

Movie Ratings – In this experiment we use the Movie-
Lens dataset3, associated with a single relation (rat-
ing(User,Movie)) defined over object domains users and
movies. The input data consist of five subsets of the orig-
inal data, limited to 500 users and approximately 4000
movies each. Original label values from 1–5 are thresh-
olded to be binary values by the global mean. For each
set, we obtain the average log-loss from using 5-fold cross-
validation, shown in Table 2. The IRM achieves lower loss

2http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
3www.grouplens.org.

Table 2.Log-loss and standard error foriEM(2), iEM(4) and IRM
on the MovieLens dataset.

IRM iEM(2) iEM(4)
0.858140± 0.0039 0.865970± 0.0046 0.828238± 0.0035
0.834761± 0.0046 0.836508± 0.0108 0.789821± 0.0029
0.854991± 0.0140 0.875009± 0.0105 0.824437± 0.0138
0.849444± 0.0088 0.858763± 0.0090 0.815944± 0.0071
0.855176± 0.0180 0.862548± 0.0147 0.816785± 0.0169

than theiEM(2), and better overall score than it achieved in
the social network experiments. This may be explained by
the larger object domains and greater heterogeneity of in-
dividuals, i.e. more amenable to clustering. Nominally in-
creasing the clusters variable sizes from 2 to 4 (e.g. 4 latent
classes of users and 4 for movies) foriEM, a notable gain in
accuracy is achieved, suggesting that a richer cluster struc-
ture is present. Relative to the IRM,iEM achieves compa-
rable performance, and may be suitably incorporated into a
model selection strategy that allows learning the number of
latent classes.

4. Remarks

This paper described a method for learning parameters of
latent-class relational models using a simple strategy. The
method uses standard probabilistic inference under a struc-
tural assumption (e.g. the Markov blanket assumption),
and the estimation procedure is realised through the incre-
mental EM algorithm of Neal and Hinton (1998). Good
empirical performance was found compared to an existing
LRM modelling framework. LRMs of rich structure (e.g.
for domains with multiple inter-dependent relations) is pos-
sible with theiEM, and it would be interesting to extend
the current method to this problem class, bringing forth the
possibility of simultaneously learning relational as wellas
cluster structures.
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