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1. Introduction

Preference learning has received increasing attention in
both machine learning and information retrieval. The
goal of preference learning is to automatically learn
a model to rank entities (e.g., documents, webpages,
products, music, etc.) according to their degrees of rel-
evance. The particularity of preference learning might
be that the training data is a set of pairwise prefer-
ences between entities, instead of explicit entity-wise
values. For example, we may only know that a user
prefers an item to another one ei ≻ ej , but we do not
know the exact preference degrees of items.

Gaussian processes have successfully been used to
learn preferences among entities (Chu & Ghahramani,
2005), as they provide nonparametric Bayesian ap-
proaches for model selection and probabilistic infer-
ence. Basically, GP based preference learning models
introduce for each entity a latent variable, which is
a function value f(xi) (shortened as fi in the rest of
the paper) of entity attributes xi. We can intuitively
view the latent function values as preference degrees
of entities. Then entities are ranked according to the
latent values. Namely if an entity is preferred to an-
other one ei ≻ ej, then latent function value of the
entity is larger than that of another one fi > fj.

However, existing GP preference models only exploit
the information about entity attributes. The infor-
mation about relations among entities is not taken
into account in these models, whereas such informa-
tion is very important and informative in many ap-
plications. To incorporate relations into nonparamet-
ric Bayesian ranking models, we present a relational
Gaussian process (XPGP) approach. The key insight
of XPGP is that some hidden common causes lurk in
relational graphs, and the hidden common causes are
important factors to influence the preference degrees
of entities. The overall preference degree of an en-
tity is combined result of entity attributes and the
hidden common causes. Technically, under the GP
framework, we introduce to each entity an additional
latent function value g(ri) (shortened as gi) of relations

ri of the entity, which encodes the preference causes
hidden in relations. Then, we model entity prefer-
ence degree ξi as linear combination of related func-
tion values (i.e. fi and gi). Each preference (ei ≻ ej)
is modeled as a random variable conditioned on an in-
dicator that is a function of preference degrees (ξi and
ξj) of involved entities. The method of integrating re-
lations into probabilistic kernels by graph Laplacian
was first introduced by (Silva et al., 2007), and was
proven to be successful in classification. Here, we ex-
tend it to learning preferences. The XPGP model can
be straightforwardly extended to scenarios with mul-
tiple relations, directed and bipartite relations. The
experimental analysis on real-world dataset LETOR
demonstrates that incorporating relations can improve
the quality of preference learning.

2. Model Description

In this section, we will describe the XPGP model for
learning preferences. Assume that there are a set of
n entities E = {e1, . . . , en}, with attributes X = {xi :
xi ∈ R

D, i = 1, . . . , n}, relations between them R =
{ri,j : i, j ∈ 1, . . . , n}, and a set of m observed pairwise
ordinal relations (preferences/ranks) among entities,
O = {eis

≻ ejs
: s = 1, . . . , m; is, js ∈ 1, . . . , n} (is and

js are entities involved in s-th observed preference).
All relations of entity ei are denoted as ri.

In XPGP, we introduce to each entity two latent func-
tion values f(xi) and g(ri) (shortened as fi, gi). f(·)
and g(·) are functions of attributes and relations, re-
spectively. Their values preserve the attribute fac-
tor and relational factor of the entity on preferences.
The linear combination of latent function values ξi =
ω1fi + ω2gi is an indicator, which specifies preference
degree of the entity, taking two factors (attribute- and
relation-wise) into account. A preference ei ≻ ej is
conditioned on indicators of ei and ej with a likeli-
hood distribution P (ei ≻ ej|ξi, ξj). The key idea of
the XPGP model is illustrated in Fig. 1.

Prior Distributions: We assume that an infinite
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Figure 1. Graphical representation of the XPGP model. fi

is a latent function value of entity attributes. {f1, f2, . . .}
follow Gaussian process prior. gi is a latent function value
of relations, {g1, g2, . . .} follow another GP prior. ǫi de-
notes Gaussian noise. ξi is the overall preference degree of
the entity, which is weighted sum of fi, gi and ǫi. fj , gj

and ǫj are defined equivalently.

number of latent function values follow a GP prior with
zero mean and covariance function ka(xi, xj) (the sub-
script a emphasizes they are attribute-wise). In terms
of definition of GP, any finite set of function values
f = {fi : i = 1, . . . , n} have a multivariate Gaussian
distribution, which mean and covariance matrix Ka

are defined by mean and covariance functions of the
GP (Rasmussen & Williams, 2006).

Equivalently, we define {g1, g2, . . .} as another zero-
mean GP, so that g = {gi : i = 1, . . . , n} follows a mul-
tivariate Gaussian distribution with covariance matrix
Kr. However, we note that the covariance function
kr(ri, rj) should represent correlation of i and j on re-
lations. There are generally two strategies to define
the kernel function. The simplest way is to represent
the relations of entity i as a vector. The kernel func-
tion kr(ri, rj) can then be any Mercer kernel functions,
and the computation is similar with that of attributes.
Alternatively, we can employ graph-based kernels to
obtain the covariances (Smola & Kondor, 2003).

Now we can write the prior P (f, g|A, R) as:

(2π)−n|Ka|−
1

2 |Kr |−
1

2 exp(−fT K−1

a f + gT K−1

r g

2
). (1)

Likelihood of Preference: Essentially, we extend
the likelihood distribution introduced by (Chu &
Ghahramani, 2005) to relational domains. In rela-
tional data, the preference degree of an entity consists
of two components: attribute-wise factor and relation-
wise factor, respectively represented as latent function
values fi and gi. The overall preference degree of the
entity is technically represented as weighted sum of the
two latent functions: ξi = ω1fi + ω2gi. The likelihood
function is

P (ei ≻ ej |ξi − ξj) =

∫ ξi−ξj
√

2σ

−∞

N(t|0, 1)dt ≡ Φ(
ξi − ξj√

2σ
),

which means: the larger the preference degree of ei is
than that of ej , the more likely ei is preferred to ej.

Directed, Bipartite and Multiple Relations: In
multi-relational scenarios, we use distinct latent func-
tion values to represent preference factors driven by
different types of relations, i.e., introduce to each en-
tity multiple relational function values, one for each
type of relations: {gr1

i , gr2

i , . . .}. The latent function
values of the same type of relations, e.g. {gr1

1
, . . . , gr1

n },
share a GP prior. The overall preference degree is
weighted sum of all latent function values associated
with the entity: ξi = ω1fi + ω2g

r1

i + ω3g
r2

i + . . . + ǫi.

In a directed relation, the two involved entities play
different roles. Consider e.g. links of webpages. The
entities typically serve as the linking and linked web-
pages. It is reasonable to introduce to a webpage two
latent function values to respectively represent pref-
erence factors from linking and linked “roles” of the
entity. The preference degree of a webpage becomes:
ξi = ω1fi + ω2g

linking
i + ω3g

linked
i + ǫi.

If relations are bipartite, i.e., there are different types
of entities involved in relations, then graph kernels for
univariate relations are not applicable. We address the
problem by projecting bipartite relations to univariate
ones. Specifically, we add a relation between entities i

and j iff. both entities link to the same entity. Then
we can compute the kernels on the projected graphs.

3. EMEP-based Inference and Learning

This section will present the inference and learning
methods for the XPGP model based on the EM-EP
method (Kim & Ghahramani, 2006). The key infer-
ence problem is computing the posterior distribution
over the latent function values given attributes X , re-
lations R, and preference relations O :

P (f, g|X ,R,O) ∝ P (f, g|X ,R)
∏

s

P (eis ≻ ejs |ξis , ξjs),

where prior and likelihood distributions are defined as
Sec. 2. Unfortunately, computing this posterior distri-
bution is intractable. We thus stick to the expectation
propagation (EP) algorithm to approximate the pos-
terior distribution, i.e., we use unnormalized Gaussian
distributions ts(ξis

, ξjs
|µ̃s, σ̃

2

s , Z̃s) to approximate the

real likelihood distribution Φ(
ξis−ξjs
√

2σ
). In the inference

process, we update the approximations for each ob-
served preference pair sequentially until convergence.

We learn the hyperparameters under the empirical
Bayesian framework with a Expectation Maximum ap-
proach. In the E step, the EP parameters (µ̃i,k, σ̃2

i,k,

Z̃i,k) are optimized to approximate the posterior of
latent variables with the current values of hyperpa-
rameters. In the M step, the hyperparameters are op-
timized to maximize the lower bound of log marginal
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likelihood with scaled conjugate gradient method.

4. Experiments

We apply XPGP to relevance feedback, and evaluate
it with the OHSUMED dataset in LETOR (Liu et al.,
2007). In the experiments, we use XPGP model to pre-
dict preferences on articles (resp. webpages) based on
some known preferences. This corresponds to trans-
ductive preference learning. We compare the XPGP
model with standard GP (Chu & Ghahramani, 2005)
and SVM models (Joachims, 2002). For GP-based ap-
proaches, we use Gaussian kernels to compute the co-
variance matrixes on entity attributes, and use two
different graph kernels to obtain correlations on rela-
tions: one is regularized Laplacian and the other is
the kernel from (Silva et al., 2007). The RBF kernel
is employed in the SVM method.

In the OHSUMED dataset, there are 106 queries, each
of which is associated with some relevant documents
evaluated by humans. The relevance degree has three
levels: definitely relevant, partially relevant and not
relevant. (Liu et al., 2007) sampled some “possi-
ble” relevant documents from the document collection
and got about 152 documents on average for a query.
They extracted 25 dimension vector for each query-
document pair. The relations between documents are
based on similarity matrix, i.e. there is a weighted
complete graph between documents and the weight of
each edge is cosine similarity between the two docu-
ments. Although the relations here are “pseudo” ones,
the model can deal with real relations, e.g. friendship.

In the dataset, each document is associated with a rel-
evance degree. We transfer the entity-wise degrees to
the pair-wise preferences. This is not only due to the
need of modeling with XPGP, most importantly, pref-
erences are more realistic in real-world applications.
In the experiments, we randomly select 100, 150, 200
preference pairs for each query as evidence, and predict
the remaining ones. For each setting, the selection was
repeated 20 times. Fig. 2 shows the experimental re-
sults averaged over randomly selected 10 queries. We
compute the prediction error rate and the area under
ROC curve (AUC). In all settings, the XPGP model
outperforms the other two models, especially when the
number of known preference pairs is small. The two
different graph kernels obtain similar results.

5. Summary

We propose a relational GP model XPGP for pref-
erence learning, which integrates relations with en-
hanced priors using graph kernels. The empirical anal-
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Figure 2. Experimental results on predicting preference
pairs given different number of known ones. Left: Pre-
diction error rate. The less the better. Right: Area under
ROC curve. The larger the better.

ysis on the LETOR dateset demonstrates that rela-
tional information can improve the performance of a
probabilistic kernel method on learning preference.
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