Hypergraph Lifting for Structure Learning in
Markov Logic Networks

Stanley Kok
Pedro Domingos

KOKS@CS.WASHINGTON.EDU
PEDRODQCS.WASHINGTON.EDU

Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

1. Introduction

In recent years, there has been a surge of interest
in combining statistical and relational learning ap-
proaches (Getoor & Taskar, 2007), driven by the re-
alization that many applications require both. Re-
cently, Richardson and Domingos (2006) introduced
Markov logic networks (MLNs), a statistical relational
language combining first-order logic (Genesereth &
Nilsson, 1987) and Markov networks (Pearl, 1988).
An MLN consists of weighted first-order logic formu-
las, viewed as templates for Markov network features.
Learning MLN structure is an important but chal-
lenging task, and to date only a few approaches have
been proposed (Kok & Domingos, 2005; Mihalkova &
Mooney, 2007; Biba et al., 2008b; etc.).

Most of these approaches systematically enumerate
candidate clauses by starting from an empty clause,
greedily adding literals to it, and testing the resulting
clause’s empirical fit to training data. Such a strat-
egy has two shortcomings: searching the large space
of clauses is computationally expensive; and it is sus-
ceptible to converging to a local optimum, missing po-
tentially useful clauses. These shortcomings can be
ameliorated by using the data to a priori constrain
the space of candidates. This is the basic idea in rela-
tional pathfinding (Richards & Mooney, 1992)), which
finds paths of true ground atoms that are linked via
their arguments and then generalizes them into first-
order rules. Each path corresponds to a conjunction
that is true at least once in the data. Since most con-
junctions are false, this helps to concentrate the search
on regions with promising rules. However, pathfind-
ing potentially amounts to exhaustive search over an
exponential number of paths. Hence, systems us-
ing relational pathfinding (e.g., BUSL (Mihalkova &
Mooney, 2007)) typically restrict themselves to very
short paths, creating short clauses from them and
greedily joining them into longer ones.

In this paper, we present LHL (Kok & Domingos,
2009), an approach that uses relational pathfinding to

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

a fuller extent than previous ones. It mitigates the
exponential search problem by first inducing a more
compact representation of data, in the form of a hyper-
graph over clusters of constants. Pathfinding on this
‘lifted’ hypergraph is typically at least an order of mag-
nitude faster than on the ground training data, and
produces MLNs that are more accurate than previous
state-of-the-art approaches. LHL is short for Learning
via Hypergraph Lifting.

2. Learning via Hypergraph Lifting

In LHL, we make use of hypergraphs. A hypergraph is a
generalization of a graph in which an edge can link any
number of nodes, rather than just two. More formally,
we define a hypergraph as a pair (V, E) where V is a
set of nodes, and F is a multiset of labeled non-empty
ordered subsets of V' called hyperedges. In LHL, we
find paths in a hypergraph. A path is defined as a set
of hyperedges such that for any two hyperedges ey and
e, in the set, there exists an ordering of (a subset of)
hyperedges in the set eg,e1,...,e,_1, €, such that e;
and e; share at least one node.

A database can be viewed as a hypergraph with con-
stants as nodes, and true ground atoms as hyperedges.
Each hyperedge is labeled with a predicate symbol.
Nodes (constants) are linked by a hyperedge (true
ground atom) if and only if they appear as arguments
in the hyperedge. (Henceforth we use node and con-
stant interchangeably, and likewise for hyperedge and
true ground atom.) A path of hyperedges can be gen-
eralized into a first-order clause by variabilizing their
arguments. To avoid tracing the exponential number
of paths in the hypergraph, LHL first jointly clusters
the nodes into higher-level concepts, and by doing so
it also clusters the hyperedges (i.e., the ground atoms
containing the clustered nodes). The ‘lifted’ hyper-
graph has fewer nodes and hyperedges, and therefore
fewer paths, reducing the cost of finding them.

LHL begins by lifting a hypergraph. Then it finds
paths in the lifted hypergraph. Finally it creates can-
didate clauses from the paths, and learn their weights
to create an MLN.

Hypergraph Lifting for Structure Learning in Markov Logic Networks

2.1. Hypergraph Lifting

We call our hypergraph lifting approach LiftGraph. It
is defined using Markov logic rules similar to those in
SNE (Kok & Domingos, 2008). LiftGraph differs from
SNE in the following ways. LiftGraph can handle rela-
tions of arbitrary arity whereas SNE can only handle
binary relations. While SNE can cluster relation sym-
bols, in this paper, for simplicity, we do not cluster
relations. (However, it is straightforward to extend
LiftGraph to do so.)

LiftGraph works by jointly clustering the constants in
a hypergraph in a bottom-up agglomerative manner,
allowing information to propagate from one cluster to
another as they are formed. The number of clusters
need not be pre-specified. As a consequence of clus-
tering the constants, the ground atoms in which the
constants appear are also clustered. Each hyperedge in
the lifted hypergraph contains at least one true ground
atom.

LiftGraph simplifies the learning problem by perform-
ing hard assignments of constant symbols to clus-
ters (i.e., instead of computing probabilities of cluster
membership, a symbol is simply assigned to its most
likely cluster). The weights and the log-posterior can
now be computed in closed form. LiftGraph thus sim-
ply searches over cluster assignments, evaluating each
one by its posterior probability.

2.2. Path Finding

FindPaths constructs paths by starting from each hy-
peredge in a hypergraph. It begins by adding a hy-
peredge to an empty path, and then recursively adds
hyperedges linked to nodes already present in the path
(hyperedges already in the path are not re-added). Its
search terminates when the path reaches a maximum
length, when no new hyperedge can be added, or when
a resource bound is reached. Each time a hyperedge
is added to the path, FindPaths stores the resulting
path as a new one. All the paths are passed on to the
next step to create clauses.

2.3. Clause Creation and Pruning

A path in the hypergraph corresponds to a conjunction
of hyperedges, and it guarantees that the conjunction
has at least one support in the hypergraph. We re-
place each cluster in a path with a variable, thereby
creating a variabilized atom for each hyperedge. We
convert the conjunction of positive literals to a clause
because that is the form that is typically used by ILP
and MLN structure learning and inference algorithms.
(In Markov logic, a conjunction of positive literals with
weight w is equivalent to a clause of negative literals

Table 1. Information on datasets.
Const- Predi- True Total
Dataset Types ants cates Atoms Atoms
IMDB 4 316 6 1224 17,793
UW-CSE 9 929 12 2112 260,254
Cora 5 3079 10 42,558 687,422

with weight —w). In addition, we add clauses with
the signs of up to n literals flipped (where n is a user-
defined parameter), since the resulting clauses may
also be useful. (Notice that if all but one of the literals
are negative, this is a definite clause whose antecedent
is supported by a path in the hypergraph.)

We score each clause using weighted pseudo-log-
likelihood (WPLL) (Kok & Domingos, 2005), and pe-
nalize the WPLL with a length penalty —nd, where d
is the number of atoms in a clause. We iterate over the
clauses from shortest to longest. For each clause, we
compare its scores against those of its sub-clauses (con-
sidered separately) that have already been retained. If
the clause scores higher than all of these sub-clauses,
it is retained; otherwise, it is discarded. In this man-
ner, we discard clauses which are unlikely to be useful.
Note that this process is efficient because the score
of a clause only needs to be computed once, and can
be cached for future comparisons. Finally we greedily
add the clauses one at a time in order of decreasing
score to an MLN (initially empty). After adding each
clause, we relearn the weights, and keep the clause in
the MLN if it improves the overall WPLL. Option-
ally, we discard clauses containing ‘dangling’ variables
(i.e., variables which only appear once in a clause),
since these are unlikely to be useful.

3. Experiments

We carried out experiments to investigate whether
LHL performs better than previous approaches,
and to evaluate the contributions of its compo-
nents. We used three datasets publicly available at
http://alchemy.cs.washington.edu. Their details are
shown in Table 1. The IMDB dataset, created by
Mihalkova and Mooney (2007) from the IMDB.com
database, describes a movie domain. The UW-
CSE dataset, prepared by Richardson and Domingos
(2006), describes an academic department. The Cora
dataset is a collection of citations to computer science
papers, created by Andrew McCallum, and later pro-
cessed by Singla and Domingos (2006). Each dataset
is divided into 5 folds.

We compared LHL to two state-of-the-art systems:
BUSL (Mihalkova & Mooney, 2007) and MSL (Kok
& Domingos, 2005). Both systems are implemented in
the Alchemy software package (Kok et al., 2009). To
investigate the importance of hypergraph lifting, we
removed the LiftGraph component from LHL, and let

Hypergraph Lifting for Structure Learning in Markov Logic Networks

Table 2. Experimental results.

IMDB UW-CSE Cora
System AUC CLL Time (min) AUC CLL Time (hr) AUC CLL Time (hr)
LHL 0.694+0.01 —0.13+£0.00 15.63+1.88 |0.22+0.01 —0.04£0.00 7.55+1.53 |0.87£0.00 —0.26+0.00 14.82+1.78
LHL-FindPaths | 0.694+0.01 —0.13£0.00 242.414+30.31|0.19+0.01 —0.04£0.00 56.694+19.98 | 0.91£0.00 —0.174+0.00 5935.50+39.21
LHL-LiftGraph | 0.454+0.01 —0.27+£0.01 0.184+0.01 |0.14£0.01 —0.0640.00 0.001+£0.000 - - 0.014+0.01
BUSL 0.474+0.01 —0.14+0.00 4.69+£1.02 |0.21+0.01 —0.05£0.00 12.97+9.80 |0.17£0.00 —0.3740.00 18.65+9.52
MSL 0.414+0.01 —0.1740.00 0.17+0.10 | 0.18+£0.01 —0.574£0.00 2.13+0.38 | 0.174+0.00 —0.37+0.00 65.60+£1.82

FindPaths run on the unlifted hypergraph. We call
this system LHL-FindPaths. We also investigated the
contribution of hypergraph lifting alone by applying
LiftGraph’s MLN on the test sets. We call this sys-
tem LHL-LiftGraph. Altogether we compared five sys-
tems: LHL, LHL-FindPaths, LHL-LiftGraph, BUSL
and MSL. All systems are implemented in C++.

For each dataset, we performed cross-validation using
the five previously defined folds. For IMDB and UW-
CSE, we performed inference over the groundings of
each predicate to compute their probabilities of be-
ing true, using the groundings of all other predicates
as evidence. Exceptions are the predicates Actor and
Director (IMDB), and Student and Professor (UW-
CSE). We evaluated groundings for those predicates
together, using all other predicates as evidence. This
is because groundings of those predicates for the same
constant are mutually exclusive and exhaustive (e.g.,
Actor(Bob) and Director(Bob)). Knowing one deter-
mines the value of the other. For Cora, we ran infer-
ence over each of the four predicates SameCitation,
SameTitle, SameAuthor, and SameVenue in turn, us-
ing the groundings of all other predicates as evidence.
To evaluate the performance of the systems, we mea-
sured the average conditional log-likelihood of the test
atoms (CLL), and the area under the precision-recall
curve (AUC). Table 2 reports the AUCs, CLLs and
runtimes (with their standard deviations) of the vari-
ous systems. The AUC and CLL results are averages
over all atoms in the test sets. Runtimes are averages
over the five folds.

We first compare LHL to BUSL and MSL.! In both
AUC and CLL, LHL outperforms BUSL and MSL
on all datasets. The differences between LHL and
BUSL on UW-CSE are statistically significant accord-
ing to one-tailed paired t-tests (p-values < 0.01 for
both AUC and CLL). LHL is slower than BUSL and
MSL on the smallest dataset (IMDB), mixed on the

L The results for MSL on UW-CSE and Cora are much worse than
those reported by Kok and Domingos (2005). They evaluated MSL
by computing the probability that a ground atom is true given all
other ground atoms as evidence, a much easier task than ours. We
also did not use their domain-specific declarative bias to guide clause
construction. The results for BUSL on IMDB and UW-CSE are also
worse than that reported by Mihalkova and Mooney (2007). Unlike
them, we omitted equality predicates (e.g., SameMovie(movie, movie))
because they are superfluous and can be easily predicted with a
single unit clause. We also infer the groundings of Actor/Director
and Professor/Student simultaneously, which is a harder task than
theirs. The last two reasons also contribute to the poor performance
of MSL.

medium one (UW-CSE), and faster on the largest one
(Cora). This suggests that LHL scales better than
BUSL and MSL. Next we compare LHL to its compo-
nents LHL-LiftGraph and LHL-FindPaths. Compar-
ing the runtimes of LHL and LHL-FindPaths, we see
that LHL is much faster than LHL-FindPaths. LHL’s
AUC and CLL are similar to or better than LHL-
FindPaths’s on IMDB and UW-CSE, but are worse
on Cora. These results suggest that: LHL is a lot
faster than LHL-FindPaths without any loss in accu-
racy on some datasets; and when LHL-FindPaths does
better, it does so at a huge computational cost (e.g.,
it took about 247 days to run on Cora?). LHL also
outperforms LHL-LiftGraph on both AUC and CLL
on the IMDB and UW-CSE datasets.® This suggests
that LHL’s ability to learn clauses that capture com-
plex dependencies among predicates is an advantage
over the simple rules in LHL-LiftGraphs.

Acknowledgments: This research was partly funded by ARO
grant W911NF-08-1-0242, DARPA contracts FA8750-05-2-0283,
FA8750-07-D-0185, HRO0011-06-C-0025, HRO0011-07-C-0060 and
NBCH-D030010, NSF grants IIS-0534881 and IIS-0803481, and
ONR grant N00014-08-1-0670. The views and conclusions contained
in this document are the authors’ and should not be interpreted as
necessarily representing the official policies, either expressed or im-
plied, of ARO, DARPA, NSF, ONR, or the US Government.

References

Biba, M., Ferilli, S., & Esposito, F. (2008). Structure learning
of Markov logic networks through iterated local search. Proc.
ECAI’08.

Genesereth, M. R., & Nilsson, N. J. (1987). Logical foundations of
artificial intelligence.

Getoor, L., & Taskar, B. (Eds.). (2007). Introduction to statistical
relational learning.

Kok, S., & Domingos, P. (2005). Learning the structure of Markov
logic networks. Proc. ICML’05.

Kok, S., & Domingos, P. (2008). Extracting semantic networks from
text via relational clustering. Proc. ECML’08.

Kok, S., & Domingos, P. (2009). Learning Markov logic network
structure via hypergraph lifting. Proc. ICML’09.

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon,
H., Lowd, D., Wang, J., & Domingos, P. (2009). The
Alchemy system for statistical relational AI (Technical Re-
port). Dept. of Comp. Sci. and Eng., Univ. of Washington.
http://alchemy.cs.washington.edu.

Mihalkova, L., & Mooney, R. J. (2007). Bottom-up learning of
Markov logic network structure. ICML’07.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems:
Networks of plausible inference.

Richards, B. L., & Mooney, R. J. (1992).
pathfinding. Proc. AAAI’92.

Richardson, M., & Domingos, P. (2006).
Machine Learning, 62.

Singla, P., & Domingos, P. (2006). Entity resolution with Markov
logic. Proc. ICDM’06.

Learning relations by

Markov logic networks.

2For each test fold, we ran FindPaths in parallel on all training
folds, and added the runtimes.

3LHL-LiftGrraLph on Cora crashed by running out of memory.
Alchemy automatically converts rules into clausal form and repre-
sents each clause separately, causing a blow-up in the number of
clauses.

