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Abstract

ProbLog is a system that allows a user to
compute (or approximate) the probability of
a query in a theory consisting of Horn clauses
guarded by probabilistic facts. This paper
explores how to to generalize the approach
towards theories consisting of first order logic
formulas guarded by probabilistic facts.

1. Introduction

A problem for languages that combine probability the-
ory with expressive logical formulas, is that probabilis-
tic and logical knowledge might interact in complex
ways, leading to a semantics that is too complicated
to understand, and inference/learning that is too slow
to be of practical use. Initial research into Probabilis-
tic Logic Learning therefore mainly focused on adding
probabilities to restricted logical languages, such as
definite clause logic (Kersting & De Raedt, 2008; Sato
& Kameya, 1997). Since then, the trend has been to
extend the expressivity of the logical language, e.g., to
normal clauses (Poole, 2000). More recently, (Richard-
son & Domingos, 2006) allows full first-order logic,
while still offering practically feasible inference and
learning. However, this is done at the expense of some
probabilistic clarity: MLNs have no straightforward
correspondence between the weight of a formula and
its probability; instead, the probability of a formula
depends non-linearly on all weights in the theory.

In this paper, we present an attempt at constructing a
language in which (1) general first-order formulas are
allowed, (2) efficient forms of inference are possible,
and (3) weights are really probabilities. Our approach
will be an extension of that of (Poole, 2000; Sato &
Kameya, 1997; De Raedt et al., 2007). The basic idea
is to restrict all “communication” between the proba-
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bilistic and logical part of the theory to a particular,
and very limited, interface. The hope is that this will
allow us to rule out the complex interactions that make
reasoning tasks for logics such as (Nilson, 1986) hard.

2. Language and its semantics

A theory T in our language consists of a probabilis-
tic part PF and a logical part ®. The predicates of
T are likewise split into a set of probabilistic predi-
cates X p and a set of logical ones ¥;,. The probabilis-
tic part PF is made up of a number of probabilistic
facts of the form pf(T) : o, with o a non-zero prob-
ability and pf € Xp. We require that PF contains
precisely one such probabilistic fact for each pf € Xp.
Their meaning is that each ground instance pf(Z)6 of
such a fact has a probability a of being true. Differ-
ent instances (of the same or of different probabilistic
facts) are probabilistically independent. We call an as-
signment of truth values to all ground instances of all
probabilistic facts an atomic choice. The probability
prob(s) of such an atomic choice s is the product of
all a; for true instances pf;(Z)0 : a; and all (1 — )
for false instances pf;(Z)0 : «;. Next, we get to the
logical part ® of the theory. This consists of a set of
implications VZ pf(Z) — F(Z). Here, F(Z) is a first-
order formula, containing no probabilistic predicates,
and pf(Z) is an atom with a probabilistic predicate.

Fix a domain D and consider the set Wp of all possible
worlds in D, i.e., each I in Wp is an interpretation for
the vocabulary of the theory with D as its domain.
We define the semantics of our logic as follows.

Def. 1 LetT = (PF,®) be a theory and D a domain.
A distribution p over Wp is a model of T', denoted
wE T, if and only if, for each atomic choice s, p(s) =
215 Prob(s) and p(I) =0 for all I j= @.

This definition is straightforward: a distribution p is a
model if it assigns the right probabilities to the atomic
choices and is consistent with the standard FO seman-
tics for the logical part of the theory. We illustrate
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with an example of (Richardson & Domingos, 2006),
stating that friends of friends tend to be friends, friend-
less people tend to smoke, smoking tends to cause can-
cer, and friends tend to share smoking habits.

Va,y,z pfi(z,y,2) = (fr(z,y) A fry,z) — fr(z,2)))
Va : pfa(z) — =3y fr(z,y) — sm(z)
Va . pfs(z) — (sm(z) — Ca(z)).
Vay :pfa(z,y) — (fr(z,y) — (sm(z) < sm(y)))

pfi(z,y,2): 0.3 pfa() : 0.9 pfs(x,y) : 0.7 pfa(z,y) : 0.5

Consistency. A first question is when a theory is
consistent, in the sense of having at least one model .

Th. 1 Let T = (PF,®) be a theory and L(T) the set
of formulas VT F(T) for which ® contains VT pf(T) —
F(Z). There exist a distribution pn over Wp such that
w = T if and only if L(T) is consistent in D*.

For instance, ® = {pf1 — a;pfo — —a} violates this
condition (in any D), and indeed, no theory (PF, ®)
has a model. Such an inconsistency can arise if a user
makes a mistake, but for instance also if we are try-
ing to merge theories elicted from different domain ex-
perts. As in paraconsistent reasoning, it might then
be desirable to look at distributions that respect the
theory as best as possible. To this end, we can normal-
ize the original probability distribution prob to rule
out inconstistencies. For an atomic choice s, let T be
the logical theory obtained by adding to ® all literals
—pf(¢) for which s(pf(c)) = false and all atoms pf(c)
for which s(pf(¢)) = true. Let Cons be the set of all s
for which T is consistent in D. We define the normal-
ized probability prob(s) as prob(s)/ > . ccons Prob(s)
for all s € Cons and as zero for all s ¢ Cons. Replac-
ing prob by prob in Def. 1 provides a generalized notion
of a model, which we denote by ); If L(T) is consis-
tent, then = and |; coincide. However, as long as the
set of formulas that are asserted with probability 1 is
consistent, generalized models always exist.

Meaning of probabilistic facts. As is evident
from e.g. the smokers example, a probabilistic pred-
icate might have no meaning of its own, and sim-
ply be a device for speaking about the probability
of the formula that it implies. It might be more
meaningful, then, to leave out this contrivance and
refer directly to this probability. That is, instead of:
{pf(@) : a,VT pf(T) — ¢(T)}, we might want to write
more simply: VZ P(4(Z)) > «, with the obvious mean-
ing that the probability of ¢(Z) has to be at least «
for each Z. A theory of such statements, together with

!This means that there exists a model with domain D.

the assumption that all probabilities are independent,
is almost the same as what we originally had. The
only difference occurs when the formulas ¢(Z) are not
logically independent in the following sense.

Def. 2 Let F be a set of formulas ¢;(T;) and let F’ be
the set of all sentences that can be produced by filling in
the free variables T; of some ¢;(T;) € F. F islogically
independent if there does not exist a subtheory G C F’
such that G implies either a formula ¢ € F'\ G or the
negation =) of some such i € F'\ G.

Let us suppose, for instance, that the theory contains
two formulas ¢ and 1, such that ¢ = 4. In this case,
saying that P(¢) and P(v) are independent implies the
equality P(¢) = P(¢ A ) = P(¢)P(¢), which means
that P(1) = 1 or P(¢) = 0. On the other hand, if we
just have that pf; — ¢ and pfy — ¥, then saying that
pf1 and pfy are independent implies no such thing.

Th. 2 LetT be a theory. If L(T) is logically indepen-
dent, then the models of T are precisely those probabil-
ity distributions p for which w(¢;(T)) > ay, for each i
and T, and p(¢:(T)8) and 1(¢;(z)0") are independent,
for alli,j and 0,0 such that i # j or 6 #£6'.

So, under this condition, theories in our language have
a straightforward interpretation, in which the proba-
bilistic predicates no longer play a role. If the condi-
tion is not satisfied, e.g. if the theory contains some
vfi — ¢; and pf; — ¢; such that ¢; implies ¢;, then
the pf; do play a relevant role. One way of explaning
their meaning in this case might be to say that, even
though the formulas ¢; and ¢; themselves are not in-
dependent, the probabilistic facts pf; and pf; might
represent independent reasons for believing them.

For instance, suppose that a sociologist explains to us
how society currenltly imposes expectation patterns
which lead to a predominantly male student popula-
tion in engineering. We might then write:

Va Sociologist(x) — (Engineering(x) — Male(x)).
Here, the probabilistic fact Sociologist(z) represents
that z is a student to whom the sociologist’s line of
reasoning actually applies. If we believe that we have
been talking to a good sociologist, then we should as-
sign it a high probability. Now, suppose that we also
run into a statistician who has been keeping track of
enrolment into the engineering departement over the
years and uses this to predict that a proportion of en-
gineering students are male. We could add:

Va Statistician(x) — (Engineering(x) — Male(x)).
Now, Statistician(z) means that whatever pattern
was present in the statistician’s data is applicable to
x, and its probability should reflect how widespread
we expect this pattern to be. Adding these formulas
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to our theory now provides an additional reason to be-
lieve that engineering students are male, and it seems
not unreasonable to assume that these two reasons are
independent, so that this additional reasons increases
our belief in the statement.

3. Inference and implementation

We are now interested in deciding what the theory T°
allows us to conclude over the probability of some addi-
tional query formula Q). For each given domain, T has
a non-empty set M of generalized models p. Each p €
M assigns a particular probability w@Q)=> =0 w(I)
to @, yielding, in general, a non-empty probability
interval [min v p(Q), max,,. v 1(Q)]. We are now
interested in the inference task of determining this
interval. ~Because max, . 1(Q) must be equal to
1 — min . v u(~Q), we can restrict attention to the
task of computing only the lower bound. As the follow-
ing theorem shows, we can compute this lower bound
without having to consider any specific model p of T'.

Th. 3 Let M be the non-empty set of models of
a consistent theory T. Then min,, v w@) =

210 p/r;b(s), where Ty |E Q means, as usual, that
Q holds in all I € Wp such that I = Ts.

To illustrate, let us consider again the example of the
smokers. Suppose that we obtain additional infor-
mation about some specific people, say Ann, Mary
and Bob, such that sm(Ann), fr(Ann,Bob) and
fr(Bob, Mary), and want to figure out the probabil-
ity that Mary also smokes. We do this by adding
this new information to our theory (with probabil-
ity 1) and computing the lowerbound for the prob-
ability that sm(Mary) according to this new the-
ory. There are two sets of atomic choices that im-
ply sm(Mary). The first consists of all those in
which Mary is friends with Ann through their mu-
tual friend Bob (pfi1(Ann, Mary)) and she smokes be-
cause of this friendship (pfs(Ann, Mary)); the prob-
ability of this is 0.15. The second consists of those
in which Bob smokes because of his friendship with
Ann (pfs(Ann, Bob)) and Mary smokes because of her
friendship with Bob (pfs(Bob, Mary)); this probabil-
ity is 0.25. The probability of the union of these two
sets is 0.15 4+ 0.25 — 0.15 - 0.25 = 0.3625, and this is
therefore our lower bound on p(sm(Mary)).

We believe that an implementation strategy similar to
that of ProbLog (De Raedt et al., 2007) is feasible. The
idea is to enumerate proofs of the query, but whereas
ProbLog can use an SLD theorem prover, we need
to use a full first order theorem prover (e.g. PTTP

(Stickel, 1988)). Proofs return the atomic choice made
while proving and this atomic choice is passed, simi-
lar to ProbLog, to a BDD module that calculates the
probability of the query. However, there is a caveat in
case L(T) is not consistent. In that case we are using
generalized models. One need to check that the atomic
choice made in the proof results in a consistent possible
world. This can be done by a model checker. Also, the
probability of the query need to be normalised. This
can be done by enumeration the proofs of inconsistency
in the theories (again using the PTTP prover).

4. Conclusions and Future Work

We presented a first step towards a language that uses
full first-order logic, allows probabilities to be directly
specified, and is still useful for inference. However, a
lot of work still remains. On the level of semantics, the
relation to e.g. (Nilson, 1986) needs to be investigated.
On the implementation level, a first prototype need to
be built. Finally, more work on applications is needed
to validate the approach.
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