
First-Order Bayes-Ball for CP-Logic

Nima Taghipour Nima.Taghipour@cs.kuleuven.be
Wannes Meert Wannes.Meert@cs.kuleuven.be
Jan Struyf Jan.Struyf@cs.kuleuven.be
Hendrik Blockeel Hendrik.Blockeel@cs.kuleuven.be

Dept. of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, 3001 Leuven, Belgium

Abstract

Efficient probabilistic inference is key to the
success of statistical relational learning. One
issue that affects inference cost is the pres-
ence of irrelevant random variables. The
Bayes-ball algorithm can identify such irrel-
evant variables in a propositional Bayesian
network. This paper presents a lifted ver-
sion of Bayes-ball, which works directly on
the first-order level, and shows how this al-
gorithm applies to CP-logic inference.

1. Introduction

Achieving efficient inference is a major goal in statis-
tical relational learning (SRL). One issue that affects
the computational cost of probabilistic inference is the
presence of irrelevant random variables. In order to
answer a given probabilistic query, one may need only
a subset of the variables. Most SRL algorithms that
are based on Bayesian networks (BNs) therefore need
to compute the minimal relevant network (MRN) of
the query, which only includes variables for the rele-
vant ground atoms, and then run a Bayesian inference
algorithm on the MRN to compute the answer.

A straightforward way to compute the MRN for a
given query atom and probabilistic logic theory (e.g., a
CP-logic theory, see Section 2) is to compute all proofs
of the query atom (e.g., using SLD resolution) and to
collect all ground clauses that are used therein. The
MRN can be trivially constructed from these. This
method works well if there is no evidence. When truth
values for certain evidence atoms are given, all proofs
of these atoms must be computed as well to construct
the part of the BN that connects the evidence atoms

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

to the query atom. This network may contain irrele-
vant atoms: some atoms encountered in certain proofs
of an evidence atom may be D-separated (Shachter,
1998) from the query. Such irrelevant atoms can be re-
moved by running Bayes-ball (Shachter, 1998), which
has been designed to compute the relevant part of a
BN given a query and evidence. The BN obtained
after running Bayes-ball is the MRN.

This straightforward method for computing the MRN
has the disadvantage that it initially computes a BN
that may be larger than the MRN. Predoiu (2003) de-
scribes a first-order version of Bayes-ball called Magic
Bayes-ball (MBB) that addresses this issue. MBB first
performs a pass of so-called magic backward-chaining
on the query atom followed by a number of iterations
of magic forward-chaining on the evidence atoms. A
disadvantage is that MBB may compute proofs for ir-
relevant evidence atoms.

We propose a different first-order version of the Bayes-
ball algorithm called first-order Bayes-ball (FOBB),
which resembles the original algorithm more closely.
FOBB’s main advantage over MBB is that it avoids
proving irrelevant evidence atoms. While FOBB is
a general method that applies to several probabilistic
logics, we illustrate it for the particular case of causal
probabilistic logic (CP-logic).

2. CP-Logic

CP-logic is a probabilistic logic modeling language
that has been designed to model causal processes (Ven-
nekens et al., 2006). The model takes the form of a
CP-logic theory (CP-theory), which is a set of events
in which each event is represented as a rule of the fol-
lowing form:

(h1 : α1) ∨ . . . ∨ (hn : αn)← b1, . . . , bm.

with hi atoms, bi literals, and αi causal probabilities;
0 < αi ≤ 1,

∑
αi ≤ 1. We call the set of all (hi : αi)



First-Order Bayes-Ball

the head of the event, and the conjunction of literals
bi the body. If the body of a CP-event evaluates to
true, then the event will happen and cause at most
one of the head atoms to become true; the probability
that the event causes hi is given by αi. Note that if∑
αi < 1, it is possible that no head atom is caused.

Meert et al. (2008) defined a transformation that can
transform any non-recursive ground CP-theory into an
equivalent Bayesian network (EBN). The EBN con-
tains one node for each CP-theory atom and one so-
called choice node for each CP-event (Fig. 1). The
event’s body atoms become the parents of the choice
node in the EBN and the head atoms become the
node’s children. While all atom nodes in the EBN
are binary variables, the choice nodes are multi-
valued; they model the non-determinism and mutual-
exclusiveness in the outcome of the events. All atom
nodes are functional and all choice nodes are proba-
bilistic. Meert et al. (2008) give details about the
transformation.

3. Bayes-Ball

Bayes-ball (Shachter, 1998) identifies the MRN of a
BN for a given set of query and evidence nodes. It
is based on the analogy of a bouncing ball that trav-
els through the BN (Fig. 1). The ball starts at the
query nodes. Upon reaching each node, it may pass
through, bounce back and/or be blocked, depending on
the direction from which it came and on whether the
node is probabilistically or functionally dependent on
its parents (based on D-separation):

(a) an unobserved probabilistic node passes balls
through, and in addition bounces balls back from chil-
dren (e.g., s(1, 3)→ C4 → s(1, 3))
(b) an observed node bounces balls back from parents
(e.g., C2(1, 1) → r(1,1) → C2(1, 1)), but blocks balls
from children (e.g., C1(1, 2)→ s(1, 2) 6→ C3)
(c) a functional unobserved node always passes balls
through (e.g., C2(1, 2)→ t(1)→ C5)

Nodes are marked at each visit of the ball, depending
on the type of action performed on the ball. In the
end, these marks indicate the relevance of each node.

4. First-Order Bayes-Ball

FOBB is based on the same principles as Bayes-ball,
building upon the transformability of a CP-theory to
an EBN. Its main advantage is the possibility to per-
form some steps at the first-order level. Therefore, sev-
eral nodes can be represented by one first-order atom,
and be visited in one single step. We explain the algo-

a. CP-theory b. EBN

C1(1,2) C1(1,3)

C2(1,1) C2(1,2)

C3

s(1,2)

q(1)

r(1,1)

C5

t(1)

C4

s(1,3)

C6

t(2)

r(1,2)

Query node

Irrelevant node

Observed node

BB trajectory

q(x) : 0.2 ← s(x, y).
r(x, y) : 0.6 ← q(x), t(y).
s(1, 2) : 0.5 ← .

s(1, 3) : 0.9 ← .

t(1) : 0.1 ← .

t(2) : 0.3 ← .

C1 :
C2 :
C3 :
C4 :
C5 :
C6 :

Figure 1. (a) CP-theory and (b) EBN. Parts irrelevant to
the query P (q(1)|r(1, 1), s(1, 2), t(2)) are indicated with
dashed lines; the remaining part is the MRN. The gray
lines indicate a trace of Bayes-ball.

rithm at a high level; a more detailed description will
follow in a longer version of this paper.

FOBB assumes that the query atoms Q are ground,
the evidence atoms E are ground and consistent w.r.t.
the CP-theory T , and that T has a finite grounding.
The algorithm (Alg. 1) closely resembles the original
Bayes-ball (see Shachter (1998)), the main differences
are that it works with first-order atoms instead of BN
nodes, and that it uses the first-order input CP-theory
to compute the parents and children of a first-order
atom, which may also be first-order.

Based on the example (Fig. 1), we explain some of the
differences with the original Bayes-ball.

Instead of scheduling nodes, FOBB schedules triplets
that contain an atom, a direction, and constraints on
the logical variables of the atom. E.g., FOBB starts
by scheduling the query: 〈q(1), fromChild , ∅〉. Next,
FOBB retrieves this triplet from the schedule and com-
putes its parents by matching q(1) to the heads of T .
In this case, only event C1 matches, so FOBB sched-
ules 〈C1(x, y), fromChild , {x=1}〉. FOBB represents
event choices as first-order atoms, adhering to the EBN
transformation, which represents choices as BN nodes.
Note that the just scheduled triplet actually represents
multiple nodes in the EBN (due to its free variable y).

The previous paragraph illustrated how FOBB com-
putes parents. FOBB computes children as follows. If
the selected atom represents a choice then it schedules
the head atoms of the event; if the atom is a regular
atom then it matches the atom to the body atoms of
T and schedules the choices of the matching events.

Bayes-ball marks the nodes it visits. FOBB also keeps



First-Order Bayes-Ball

Algorithm 1 FOBB(T , Q, E)
S = ∅, ER = ∅
for each q ∈ Q do
S ← S ∪ 〈q, fromChild , ∅〉

while S 6= ∅ do
pick and remove a 〈p, from, C〉 from S
Ep,C ← GetUnifiable(p,C,E)
if Ep,C 6= ∅ then

Choose one e ∈ Ep,C such that ∃θ : pθ = e
ER ← ER ∪ e
S ← S ∪ 〈p, from, C ∪ Invert(θ)〉

if from = fromChild ∧ Ep,C = ∅ then
if ¬HasMark(p,C,top) then

AddMark(p,C,top)
for each pa ∈ GetParents(p,C,T ) do
S ← S ∪ 〈pa, fromChild , Project(C,pa)〉

if ¬Det(p)∧¬HasMark(p,C,bottom) then
AddMark(p,C,bottom)
for each ch ∈ GetChildren(p,C,T ) do
S ← S ∪ 〈ch, fromParent , Project(C,ch)〉

if from = fromParent then
if Ep,C 6= ∅ ∧ ¬HasMark(e,∅,top) then

AddMark(e,∅,top)
for each pa ∈ GetParents(e,∅,T ) do
S ← S ∪ 〈pa, fromChild , Project(θ,pa)〉

if Ep,C = ∅ ∧ ¬HasMark(p,C,bottom) then
AddMark(p,C,bottom)
for each ch ∈ GetChildren(p,C,T ) do
S ← S ∪ 〈ch, fromParent , Project(C,ch)〉

R← {a| HasMark(a,∅,top)∧ground(a)}
return (R, ER)

track of marks, but here these are marks for first-order
atoms. It stores the marks as triplets in a mark table;
each triplet consists of an atom, a set of constraints,
and a set of marks. E.g., the initial marks for the query
atom and for C1(x, y) are stored as 〈q(1), ∅, {top}〉 and
〈C1(x, y), {x=1}, {top}〉.
During the execution of the algorithm, it is possible
that we have to specialize an atom in the marks ta-
ble. This occurs for example if a subset of the nodes
represented by the atom interact differently with the
rest of the BN. E.g., 〈C1(x, y), fromChild , {x=1}〉 has
as parent s(x, y) with x=1. This parent represents a
set of nodes that do not all interact in the same way
with the rest of the BN because of the presence of ev-
idence. More specifically, s(1, y) for y=2 is part of the
evidence, and s(1, y) for y 6=2 is not. Therefore, they
have to be marked differently and to distinguish these
cases, FOBB uses the constraints in the triplets.

When FOBB terminates, all ground atoms marked at
the top together with the visited evidence atoms con-

stitute the MRN.

FOBB generalizes SLD-resolution since it also com-
putes proofs for the query atom. The schedule gener-
alizes SLD-resolution’s current goal and the marks can
be considered a form of tabling. A difference is that
FOBB does not detect failing derivations; in a longer
version of this paper, we will show how to address this.

5. Conclusions

We presented a first-order version of Bayes-ball called
FOBB, which finds the MRN for a given set of query
and evidence atoms.

Further work will research a version of FOBB for lifted
inference, which will produce a non-ground MRN. This
should be possible because FOBB already works at the
lifted level; the main change is to detect ground atoms
that can be considered identical with regard to infer-
ence. This resembles Singla and Domingos (2008)’s
approach; major differences are that FOBB is meant
for directed graphs instead of undirected graphs, and
that it is dependent on the query and not a compila-
tion technique.

Acknowledgments: GOA/08/008 ‘Probabilistic
Logic Learning’ to NT. Institute for the Promotion
of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen) to WM. Research Fund
K.U.Leuven to JS.

References

Meert, W., Struyf, J., & Blockeel, H. (2008). Learn-
ing ground CP-logic theories by leveraging Bayesian
network learning techniques. Fundamenta Informat-
icae, 89, 131–160.

Predoiu, L. (2003). Magic Bayes-Ball: Ein Bayes-Ball-
Algorithmus für Bayes’sche Datalog-Programme.
Master’s thesis, University of Freiburg, Germany.

Shachter, R. (1998). Bayes-Ball: The rational pas-
time (for determining irrelevance and requisite infor-
mation in belief networks and influence diagrams).
Proc. of the 14th Conf. on Uncertainty in Artificial
Intelligence (pp. 480–487).

Singla, P., & Domingos, P. (2008). Lifted first-order
belief propagation. Proc. of the 23rd AAAI Conf.
on Artificial Intelligence (pp. 1094–1099).

Vennekens, J., Denecker, M., & Bruynooghe, M.
(2006). Representing causal information about a
probabilistic process. Lecture Notes in Computer
Science, 4160, 452–464.


