New Results on Listing Closed Sets of Strongly Accessible Set Systems (Extended Abstract)

Mario Boley^a Tamás Horváth^{b,a} Axel Poigné^a Stefan Wrobel^{a,b} MARIO.BOLEY@IAIS.FRAUNHOFER.DE TAMAS.HORVATH@IAIS.FRAUNHOFER.DE AXEL.POIGNE@IAIS.FRAUNHOFER.DE STEFAN.WROBEL@IAIS.FRAUNHOFER.DE

^aFraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany ^bDepartment of Computer Science, University of Bonn, Germany

1. Introduction

We study the problem of listing all closed sets (i.e., fixpoints) of a closure operator $\sigma : \mathcal{F} \to \mathcal{F}$, where \mathcal{F} is a subset of the power set $\mathcal{P}(E)$ for some finite ground set E. We assume that \mathcal{F} is given by a membership oracle. This problem appears for instance in discrete mathematics, formal concept analysis, and data mining. Except for data mining, most of the results are restricted to the case $\mathcal{F} = \mathcal{P}(E)$, for which several efficient algorithms have been developed. In data mining, there is a special interest in listing all closed sets satisfying some additional "interestingness" constraint (e.g., frequency). Such constraints usually specify an independence system, i.e., a set system closed under subsets. The case that \mathcal{F} is an independence system can easily be reduced to the case $\mathcal{F} = \mathcal{P}(E)$.

In a former work (Boley et al., 2007) we defined different graph mining settings raising the more general problem of listing all closed sets of strongly accessible set systems. In a nutshell, strong accessibility means that every $Y \in \mathcal{F}$ can be reached from all $X \subset Y$ with $X \in \mathcal{F}$ via augmentations with single elements "inside \mathcal{F} ". This is a strict relaxation of independence systems and can be thought of as an abstract generalization of connectivity in the sense that the family of all connected vertex sets of a graph always forms a strongly accessible set system. The main result in (Boley et al., 2007) is a DFS-algorithm that lists all closed sets of strongly accessible set systems with polynomial delay and incremental polynomial space. In this extended abstract we summarize our *new* results on listing closed sets of strongly accessible set systems:

- (i) While listing all closed sets is intractable for accessible set systems, it becomes tractable for the class of strongly accessible set systems.
- (ii) We give a *divide-and-conquer* algorithm listing

all closed sets of strongly accessible set systems with polynomial delay and in polynomial space. This algorithm has not only *better complexity* than the DFS-algorithm in (Boley et al., 2007), but provides also an *algorithmic characterization* of strongly accessible set systems.

We investigate the relationship between closure operators and support-closedness of patterns with respect to datasets. Support-closedness is the closedness notion of mining transactional datasets: A set is called support-closed if all its supersets are contained in strictly less transactions than itself.

- (iii) We show that support-closedness for all datasets is induced by a closure operator if and only if the set system satisfies a certain *confluence* property.
- (iv) Moreover, a corresponding closure operator can be computed *efficiently* if its domain is strongly accessible. Together with the main result of this paper this constitutes a fairly general sufficiency criterion for the tractability of listing all supportclosed patterns of a dataset.
- (v) In contrast, if there is no corresponding closure operator, listing all support-closed sets is *hard* even for independence systems.

2. Preliminaries

A (finite) set system is an ordered pair (E, \mathcal{F}) , where E is some (finite) set, called ground set, and $\mathcal{F} \subseteq \mathcal{P}(E)$. In this paper we consider only finite non-empty set systems. Furthermore, we assume that set systems are given implicitly by membership oracles. A membership oracle for \mathcal{F} is a boolean-valued function that, for every $F \subseteq E$, returns "true" if and only if $F \in \mathcal{F}$. A set system (E, \mathcal{F}) is called (i) *accessible* if for all $X \in \mathcal{F} \setminus \{\emptyset\}$ there is an $e \in X$ such that $X \setminus \{e\} \in \mathcal{F}$, (ii) *strongly accessible* if it is accessible and for all $X, Y \in \mathcal{F}$ with $X \subset Y$, there is an $e \in Y \setminus X$ such that $X \cup \{e\} \in \mathcal{F}$, and (iii) an *independence system* if $Y \in \mathcal{F}$ and $X \subseteq Y$ together imply $X \in \mathcal{F}$. Clearly, the class of strongly accessible set systems properly contained by the class of accessible set systems. We define a further class of set systems that does not stand in any containment relation with the above classes. A set system (E, \mathcal{F}) is called *confluent* if for all $I, X, Y \in \mathcal{F}$ with $\emptyset \neq I \subseteq X$ and $I \subseteq Y$ it holds that $X \cup Y \in \mathcal{F}$.

We now turn to closure operators. Let (E, \mathcal{F}) be a set system. A mapping $\sigma : \mathcal{F} \to \mathcal{F}$ is called a closure operator if (i) $X \subseteq \sigma(X)$ (extensivity), (ii) $X \subseteq Y \Rightarrow \sigma(X) \subseteq \sigma(Y)$ (monotonicity), and (iii) $\sigma(X) = \sigma(\sigma(X))$ (idempotence) hold for all $X, Y \in \mathcal{F}$. A set $F \in \mathcal{F}$ is called closed if it is a fixpoint of σ , i.e., if $\sigma(F) = F$. The family of closed elements of \mathcal{F} is denoted by $\sigma(\mathcal{F})$, i.e., $\sigma(\mathcal{F}) = \{F \in \mathcal{F} : \sigma(F) = F\}$. Note that in comparison to other work on closed set enumeration, the domain of the closure operator is some subset of $\mathcal{P}(E)$, and not $\mathcal{P}(E)$. Thus, in general, σ does not induce a closure system on \mathcal{F} .

3. Closed Set Listing

In this section we deal with the following problem:

Problem 1 (LIST-CLOSED-SETS) Given a set system (E, \mathcal{F}) with $\emptyset \in \mathcal{F}$ and a closure operator $\sigma : \mathcal{F} \to \mathcal{F}$, list the elements of $\sigma(\mathcal{F})$.

Algorithm 1 Divide & Conquer Closed Set Listing
Input : finite set system (E, \mathcal{F}) with $\emptyset \in \mathcal{F}$ and closure operator σ on \mathcal{F} .
Output: family of closed sets $\sigma(\mathcal{F})$
MAIN:
1: print $\sigma(\emptyset)$ 2: LIST $(\sigma(\emptyset), \emptyset)$
LIST(C, B):
1: choose an element $e \in E \setminus (C \cup B)$ satisfying $C \cup \{e\} \in \mathcal{F}$ if such an e exists; otherwise return
2: $C' \leftarrow \sigma(C \cup \{e\})$ 2: $f' \leftarrow \sigma(C \cup \{e\})$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
5: LIST (C', B)
6: end if 7: LIST $(C, B \cup \{e\})$

Consider Algorithm 1. It is based on the divide-andconquer paradigm and applies recursively the following principle: For the current closed set C, first list all closed supersets of C containing some augmentation element e and then all closed supersets of C not containing e. This is a well-known listing scheme (see, e.g., (Gély, 2005)). However, in contrast to other closed set listing algorithms, it is defined for any $\mathcal{F} \subseteq \mathcal{P}(E)$ with $\emptyset \in \mathcal{F}$. The following results hold for Algorithm 1.

Theorem 2 Let (E, \mathcal{F}) be a set system with $\emptyset \in \mathcal{F}$. Algorithm 1 lists $\sigma(\mathcal{F})$ exactly and non-redundantly for all closure operators σ on \mathcal{F} iff (E, \mathcal{F}) is strongly accessible.

Remark 3 As a byproduct of Theorem 2 we get an algorithmic characterization of strongly accessible set systems for the identity map on \mathcal{F} as closure operator: Let (E, \mathcal{F}) be a set system with $\emptyset \in \mathcal{F}$. Then Algorithm 1 for input (E, \mathcal{F}) given by a membership oracle and for the identity operator on \mathcal{F} lists \mathcal{F} exactly and non-redundantly iff (E, \mathcal{F}) is strongly accessible.

We now turn to efficiency. Let n = |E|. Since $|\sigma(\mathcal{F})|$ can in general be as large as 2^n , there is no algorithm solving LIST-CLOSED-SETS in time polynomial in n. Thus, we aim for a good time bound *per closed set* and a good bound on the *delay*, i.e., the number of steps between the output of two successive sets. In addition the complexity of Algorithm 1 also depends on the representation of the set system and on the closure operator. Accordingly, we will study the time and space complexity of Algorithm 1 also in terms of those of (i) finding an augmentation element (line 1) and (ii) computing the closure of an element in \mathcal{F} (line 2). We denote by T_a , S_a , T_{σ} , and S_{σ} the maximum time and space requirements of these operations for an input of size n, respectively. Note that the *auq*mentation problem in line 1 can always be solved with $|E \setminus (C \cup B)| < n$ membership-queries. We still make T_a an explicit parameter of our results, because usually the problem can be implemented more efficiently than by this naïve approach.

Theorem 4 Restricted to strongly accessible set systems, Algorithm 1 solves LIST-CLOSED-SETS with total time $O(|E| (T_a + T_{\sigma}) |\sigma(\mathcal{F})|)$, delay $O(|E|^2 (T_a + T_{\sigma}))$, and space $O(|E| + S_a + S_{\sigma})$.

While Algorithm 1 is only correct for strongly accessible set systems, there might be other efficient algorithms that solve LIST-CLOSED-SETS for a broader class of set systems. Clearly, for any set system (E, \mathcal{F}) and closure operator σ on \mathcal{F} , $\sigma(\mathcal{F})$ can be listed in total time $O(2^n)$ by a deterministic algorithm that has ac-

cess to \mathcal{F} only by means of membership oracle and closure computations, if the invocation of the membership oracle and the closure computation are both charged by unit time. Theorem 5 below not only shows that this bound cannot be substantially improved for accessible set systems, but also implies that there is no deterministic algorithm solving LIST-CLOSED-SETS for this problem fragment in output polynomial time, i.e., by an algorithm having a time complexity that is polynomially bounded in $n + |\sigma(\mathcal{F})|$.

Theorem 5 For accessible set systems (E, \mathcal{F}) and closure operator σ on \mathcal{F} such that $|\sigma(\mathcal{F})| \leq 2$, there is no deterministic algorithm that has access to \mathcal{F} only by means of membership oracle and closure computations, and correctly solves problem LIST-CLOSED-SETS by invoking the membership oracle and computing the closure operator at most $2^{n/4}$ times where n = |E|.

4. Support-Closed Sets

So far we have defined a closed set as a fixpoint of some closure operator. In data mining a different notion of closedness is used. To define it, we first recall some definitions from frequent pattern mining. A dataset over a set E is a multiset \mathcal{D} of subsets of E. The elements of \mathcal{D} are called *transactions*. We say that \mathcal{D} is non-redundant if for all $e \in E$ there is a $D \in \mathcal{D}$ with $e \notin D$. For a set $X \subseteq E$, the support set of X w.r.t. \mathcal{D} , denoted $\mathcal{D}[X]$, is the multiset of transactions of \mathcal{D} containing X. Based on support sets one can define the following notion of closedness: A set $X \in \mathcal{F}$ is support-closed if $X \subset Y$ implies $\mathcal{D}[X] \supset \mathcal{D}[Y]$ for every $Y \in \mathcal{F}$. By $\mathcal{SC}(\mathcal{F}, \mathcal{D})$ we denote the family of all support-closed sets in \mathcal{F} w.r.t. \mathcal{D} . Note that in case $\emptyset \in \mathcal{F}$ it holds that a dataset \mathcal{D} is non-redundant iff $\emptyset \in \mathcal{SC}(\mathcal{F}, \mathcal{D})$. We include this requirement in our problem definition for practical and technical reasons.

Problem 6 (LIST-SC-SETS) Given a set system (E, \mathcal{F}) and a non-redundant dataset \mathcal{D} over E, list the family of support-closed sets $SC(\mathcal{F}, \mathcal{D})$.

The two notions of closedness, based on support sets and based on closure operators, are not equivalent: there are set systems and datasets such that no closure operator exists having exactly the support-closed sets as fixpoints. Hence Algorithm 1 is not generally applicable to Problem 6. Indeed, even when restricted to independence systems, LIST-SC-SETS is intractable.

Theorem 7 There is no algorithm solving LIST-SC-SETS restricted to independence systems in output polynomial time (unless P=NP). If, however, such a closure operator exists, we call it support closure operator of \mathcal{F} w.r.t. \mathcal{D} . For the existence of the support closure operator for arbitrary non-redundant datasets we have the following characterization result.

Lemma 8 Let (E, \mathcal{F}) be a set system. The support closure operator for \mathcal{F} w.r.t. \mathcal{D} exists for all nonredundant datasets \mathcal{D} over E iff (E, \mathcal{F}) is confluent.

Lemma 8 can be used to characterize the instances of LIST-SC-SETS that are also instances of LIST-CLOSED-SETS. But even in case that the support closure operator exists, it is unclear whether its computation is tractable. The following lemma states that if a support closure operator has a strongly accessible domain, it can be computed efficiently by reducing it to the augmentation problem (line 1 of Algorithm 1) for which again we denote the required time and space by T_a and S_a , respectively.

Lemma 9 Let (E, \mathcal{F}) be a strongly accessible set system, and \mathcal{D} a dataset over E. If the support closure operator of \mathcal{F} w.r.t. \mathcal{D} exists it can be computed in time $O(|E| (|\mathcal{D}| + T_a))$ and space S_a .

Combining Theorem 4 with the results of this section, we can identify a fairly general, tractable subproblem of LIST-SC-SETS. While the theorem below may not yield the strictest bounds for concrete problems where more structural assumptions hold, its conditions can usually be checked easily and it serves as a baseline for more specialized methods.

Theorem 10 Restricted to set systems that are confluent and strongly accessible LIST-SC-SETS can be solved with total time $O(|E|^2 (|\mathcal{D}| + T_a) |\mathcal{SC}(\mathcal{F}, \mathcal{D})|)$, delay $O(|E|^3 (|\mathcal{D}| + T_a))$, and space $O(|E| + S_a)$.

Note that it is crucial for Theorem 10 that Theorem 4 holds for closure operators that are only a partial function of the power set of the ground set. The support closure operator is in general not defined for arbitrary members of the power set.

References

- Boley, M., Horváth, T., Poigné, A., & Wrobel, S. (2007). Efficient closed pattern mining in strongly accessible set systems. *Proceedings of PKDD*, LNAI 4702, (pp. 382–389). Springer, Heidelberg.
- Gély, A. (2005). A generic algorithm for generating closed sets of a binary relation. *Proceedings of ICFCA*, LNCS 3403, (pp. 223–234). Springer, Heidelberg.