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Axel Poignéa axel.poigne@iais.fraunhofer.de
Stefan Wrobela,b stefan.wrobel@iais.fraunhofer.de

aFraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
bDepartment of Computer Science, University of Bonn, Germany

1. Introduction

We study the problem of listing all closed sets (i.e.,
fixpoints) of a closure operator σ : F → F , where F is
a subset of the power set P(E) for some finite ground
set E. We assume that F is given by a membership
oracle. This problem appears for instance in discrete
mathematics, formal concept analysis, and data min-
ing. Except for data mining, most of the results are
restricted to the case F = P(E), for which several ef-
ficient algorithms have been developed. In data min-
ing, there is a special interest in listing all closed sets
satisfying some additional “interestingness” constraint
(e.g., frequency). Such constraints usually specify an
independence system, i.e., a set system closed under
subsets. The case that F is an independence system
can easily be reduced to the case F = P(E).

In a former work (Boley et al., 2007) we defined dif-
ferent graph mining settings raising the more general
problem of listing all closed sets of strongly accessible
set systems. In a nutshell, strong accessibility means
that every Y ∈ F can be reached from all X ⊂ Y
with X ∈ F via augmentations with single elements
“inside F”. This is a strict relaxation of independence
systems and can be thought of as an abstract gener-
alization of connectivity in the sense that the family
of all connected vertex sets of a graph always forms
a strongly accessible set system. The main result in
(Boley et al., 2007) is a DFS-algorithm that lists all
closed sets of strongly accessible set systems with poly-
nomial delay and incremental polynomial space. In
this extended abstract we summarize our new results
on listing closed sets of strongly accessible set systems:

(i) While listing all closed sets is intractable for ac-
cessible set systems, it becomes tractable for the
class of strongly accessible set systems.

(ii) We give a divide-and-conquer algorithm listing

all closed sets of strongly accessible set systems
with polynomial delay and in polynomial space.
This algorithm has not only better complexity than
the DFS-algorithm in (Boley et al., 2007), but
provides also an algorithmic characterization of
strongly accessible set systems.

We investigate the relationship between closure op-
erators and support-closedness of patterns with re-
spect to datasets. Support-closedness is the closed-
ness notion of mining transactional datasets: A set is
called support-closed if all its supersets are contained
in strictly less transactions than itself.

(iii) We show that support-closedness for all datasets
is induced by a closure operator if and only if the
set system satisfies a certain confluence property.

(iv) Moreover, a corresponding closure operator can
be computed efficiently if its domain is strongly
accessible. Together with the main result of this
paper this constitutes a fairly general sufficiency
criterion for the tractability of listing all support-
closed patterns of a dataset.

(v) In contrast, if there is no corresponding closure
operator, listing all support-closed sets is hard
even for independence systems.

2. Preliminaries

A (finite) set system is an ordered pair (E,F), where E
is some (finite) set, called ground set, and F ⊆ P(E).
In this paper we consider only finite non-empty set
systems. Furthermore, we assume that set systems
are given implicitly by membership oracles. A mem-
bership oracle for F is a boolean-valued function that,
for every F ⊆ E, returns “true” if and only if F ∈ F .
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A set system (E,F) is called (i) accessible if for all
X ∈ F \ {∅} there is an e ∈ X such that X \ {e} ∈ F ,
(ii) strongly accessible if it is accessible and for all
X,Y ∈ F with X ⊂ Y , there is an e ∈ Y \ X such
that X ∪ {e} ∈ F , and (iii) an independence system if
Y ∈ F and X ⊆ Y together imply X ∈ F . Clearly, the
class of strongly accessible set systems properly con-
tains the class of independence systems and is properly
contained by the class of accessible set systems. We de-
fine a further class of set systems that does not stand in
any containment relation with the above classes. A set
system (E,F) is called confluent if for all I,X, Y ∈ F
with ∅ 6= I ⊆ X and I ⊆ Y it holds that X ∪ Y ∈ F .

We now turn to closure operators. Let (E,F) be a
set system. A mapping σ : F → F is called a
closure operator if (i) X ⊆ σ(X) (extensivity), (ii)
X ⊆ Y ⇒ σ(X) ⊆ σ(Y ) (monotonicity), and (iii)
σ(X) = σ(σ(X)) (idempotence) hold for all X,Y ∈ F .
A set F ∈ F is called closed if it is a fixpoint of σ, i.e.,
if σ(F ) = F . The family of closed elements of F is
denoted by σ(F), i.e., σ(F) = {F ∈ F : σ(F ) = F}.
Note that in comparison to other work on closed set
enumeration, the domain of the closure operator is
some subset of P(E), and not P(E). Thus, in gen-
eral, σ does not induce a closure system on F .

3. Closed Set Listing

In this section we deal with the following problem:

Problem 1 (list-closed-sets) Given a set system
(E,F) with ∅ ∈ F and a closure operator σ : F → F ,
list the elements of σ(F).

Algorithm 1 Divide & Conquer Closed Set Listing

Input : finite set system (E,F) with ∅ ∈ F and
closure operator σ on F ,

Output: family of closed sets σ(F)

main:
1: print σ(∅)
2: list (σ(∅), ∅)

list(C,B):
1: choose an element e ∈ E \ (C ∪B) satisfying
C ∪{e} ∈ F if such an e exists; otherwise return

2: C ′ ← σ(C ∪ {e})
3: if C ′ ∩B = ∅ then
4: print C ′

5: list (C ′, B)
6: end if
7: list (C,B ∪ {e})

Consider Algorithm 1. It is based on the divide-and-
conquer paradigm and applies recursively the follow-
ing principle: For the current closed set C, first list all
closed supersets of C containing some augmentation
element e and then all closed supersets of C not con-
taining e. This is a well-known listing scheme (see, e.g.,
(Gély, 2005)). However, in contrast to other closed set
listing algorithms, it is defined for any F ⊆ P(E) with
∅ ∈ F . The following results hold for Algorithm 1.

Theorem 2 Let (E,F) be a set system with ∅ ∈ F .
Algorithm 1 lists σ(F) exactly and non-redundantly for
all closure operators σ on F iff (E,F) is strongly ac-
cessible.

Remark 3 As a byproduct of Theorem 2 we get an
algorithmic characterization of strongly accessible set
systems for the identity map on F as closure operator:
Let (E,F) be a set system with ∅ ∈ F . Then Algo-
rithm 1 for input (E,F) given by a membership oracle
and for the identity operator on F lists F exactly and
non-redundantly iff (E,F) is strongly accessible.

We now turn to efficiency. Let n = |E|. Since |σ(F)|
can in general be as large as 2n, there is no algorithm
solving list-closed-sets in time polynomial in n.
Thus, we aim for a good time bound per closed set
and a good bound on the delay, i.e., the number of
steps between the output of two successive sets. In
addition the complexity of Algorithm 1 also depends
on the representation of the set system and on the
closure operator. Accordingly, we will study the time
and space complexity of Algorithm 1 also in terms of
those of (i) finding an augmentation element (line 1)
and (ii) computing the closure of an element in F
(line 2). We denote by Ta, Sa, Tσ, and Sσ the maxi-
mum time and space requirements of these operations
for an input of size n, respectively. Note that the aug-
mentation problem in line 1 can always be solved with
|E \ (C ∪B)| ≤ n membership-queries. We still make
Ta an explicit parameter of our results, because usu-
ally the problem can be implemented more efficiently
than by this näıve approach.

Theorem 4 Restricted to strongly accessible set sys-
tems, Algorithm 1 solves list-closed-sets with total
time O(|E| (Ta+Tσ) |σ(F)|), delay O(|E|2 (Ta+Tσ)),
and space O(|E|+ Sa + Sσ).

While Algorithm 1 is only correct for strongly acces-
sible set systems, there might be other efficient algo-
rithms that solve list-closed-sets for a broader class
of set systems. Clearly, for any set system (E,F) and
closure operator σ on F , σ(F) can be listed in total
time O(2n) by a deterministic algorithm that has ac-
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cess to F only by means of membership oracle and
closure computations, if the invocation of the mem-
bership oracle and the closure computation are both
charged by unit time. Theorem 5 below not only shows
that this bound cannot be substantially improved for
accessible set systems, but also implies that there is
no deterministic algorithm solving list-closed-sets
for this problem fragment in output polynomial time,
i.e., by an algorithm having a time complexity that is
polynomially bounded in n+ |σ(F)|.

Theorem 5 For accessible set systems (E,F) and
closure operator σ on F such that |σ(F)| ≤ 2, there is
no deterministic algorithm that has access to F only
by means of membership oracle and closure computa-
tions, and correctly solves problem list-closed-sets
by invoking the membership oracle and computing the
closure operator at most 2n/4 times where n = |E|.

4. Support-Closed Sets

So far we have defined a closed set as a fixpoint of some
closure operator. In data mining a different notion of
closedness is used. To define it, we first recall some
definitions from frequent pattern mining. A dataset
over a set E is a multiset D of subsets of E. The
elements of D are called transactions. We say that D
is non-redundant if for all e ∈ E there is a D ∈ D
with e 6∈ D. For a set X ⊆ E, the support set of X
w.r.t. D, denoted D[X], is the multiset of transactions
of D containing X. Based on support sets one can
define the following notion of closedness: A set X ∈ F
is support-closed if X ⊂ Y implies D[X] ⊃ D[Y ] for
every Y ∈ F . By SC(F ,D) we denote the family of
all support-closed sets in F w.r.t. D. Note that in
case ∅ ∈ F it holds that a dataset D is non-redundant
iff ∅ ∈ SC(F ,D). We include this requirement in our
problem definition for practical and technical reasons.

Problem 6 (list-sc-sets) Given a set system
(E,F) and a non-redundant dataset D over E, list
the family of support-closed sets SC(F ,D).

The two notions of closedness, based on support sets
and based on closure operators, are not equivalent:
there are set systems and datasets such that no clo-
sure operator exists having exactly the support-closed
sets as fixpoints. Hence Algorithm 1 is not generally
applicable to Problem 6. Indeed, even when restricted
to independence systems, list-sc-sets is intractable.

Theorem 7 There is no algorithm solving list-sc-
sets restricted to independence systems in output poly-
nomial time (unless P=NP).

If, however, such a closure operator exists, we call it
support closure operator of F w.r.t. D. For the ex-
istence of the support closure operator for arbitrary
non-redundant datasets we have the following charac-
terization result.

Lemma 8 Let (E,F) be a set system. The support
closure operator for F w.r.t. D exists for all non-
redundant datasets D over E iff (E,F) is confluent.

Lemma 8 can be used to characterize the instances of
list-sc-sets that are also instances of list-closed-
sets. But even in case that the support closure op-
erator exists, it is unclear whether its computation is
tractable. The following lemma states that if a sup-
port closure operator has a strongly accessible domain,
it can be computed efficiently by reducing it to the aug-
mentation problem (line 1 of Algorithm 1) for which
again we denote the required time and space by Ta and
Sa, respectively.

Lemma 9 Let (E,F) be a strongly accessible set sys-
tem, and D a dataset over E. If the support closure
operator of F w.r.t. D exists it can be computed in
time O(|E| (|D|+ Ta)) and space Sa.

Combining Theorem 4 with the results of this section,
we can identify a fairly general, tractable subproblem
of list-sc-sets. While the theorem below may not
yield the strictest bounds for concrete problems where
more structural assumptions hold, its conditions can
usually be checked easily and it serves as a baseline for
more specialized methods.

Theorem 10 Restricted to set systems that are con-
fluent and strongly accessible list-sc-sets can be
solved with total time O(|E|2 (|D| + Ta) |SC(F ,D)|),
delay O(|E|3 (|D|+ Ta)), and space O(|E|+ Sa).

Note that it is crucial for Theorem 10 that Theorem 4
holds for closure operators that are only a partial func-
tion of the power set of the ground set. The support
closure operator is in general not defined for arbitrary
members of the power set.
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