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Abstract

We present a new approach to large-scale
graph mining based on so-called backbone
refinement classes. The method efficiently
mines tree-shaped subgraph descriptors un-
der minimum frequency and significance con-
straints, using classes of fragments to reduce
feature set size and running times, defined in
terms of fragments sharing a common back-
bone. The method is able to optimize struc-
tural inter-feature entropy as opposed to oc-
currences, which is characteristic for open or
closed fragment mining. In the experiments,
the proposed method reduces feature set sizes
by > 90 % and > 30 % compared to com-
plete tree mining and open tree mining, re-
spectively. Evaluation using crossvalidation
runs shows that their classification accuracy
is similar to the complete set of trees but
significantly better than that of open trees.
Compared to open or closed fragment mining,
a large part of the search space can be pruned
due to an improved statistical constraint (dy-
namic upper bound adjustment), which is
confirmed in the experiments in lower run-
ning times compared to static upper bound
pruning. Further analysis using large-scale
datasets confirms that the novel descriptors
render large training sets feasible which pre-
viously might have been intractable.

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

A C++ implementation is available at
http://www.maunz.de/libfminer-doc/.

1. Introduction

Current methods for subgraph mining still suffer from
scalability problems and, quite related, problems with
excessively large solution sets. Most of the predomi-
nant approaches employ minimum frequency and pos-
sibly statistical correlation criteria such as χ2 values
(Nijssen & Kok, 2004; Yan & Han, 2002; Bringmann
et al., 2006; Jahn & Kramer, 2005). In order to re-
duce the space of frequent and significant patterns, we
use a natural property of tree-shaped subgraphs (the
backbone) to represent classes, which renders the set
usable for computational models even for large scale
datasets (Maunz, Helma & Kramer 2009). In this way,
we hope to obtain a more homogeneous and sparse dis-
tribution of patterns compared to occurrence summa-
rization methods such as open or closed fragments.

1.1. Problem Formulation

Backbone Refinement Classes Undirected, la-
belled graphs are partially ordered via the refinement
relation �. Let P be the set of acyclic graphs with
degree at most two (paths) and let T be the set of
acyclic graphs (trees). Let p = {v1, . . . , vm} ∈ P
be a path, then its sequence is defined as the string
l(v1)l((v1, v2)) . . . l((vm−1, vm))l(vm), obtained by
concatenating node and edge labels along the path.
Every tree t ∈ T has a backbone b(t), which is defined
as the longest path p ⊆ t with the lowest sequence
according to a lexicographic ordering (described
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by Nijssen and Kok (Nijssen & Kok, 2004)). An
(immediate) tree refinement of t ∈ T is an addition of
an edge and a node to t s.t. the result t′ is still acyclic,
i.e. t′ ∈ T . A backbone refinement is a tree refinement
that is backbone preserving, i.e. b(t′) = b(t).
We are considering the Backbone Refinement
Classes of b ∈ P , denoted by BBRCb =
{BBRCb1 , . . . ,BBRCbn

}, where each BBRCbi
is

the set of trees that are backbone refinements of each
other with respect to b, i.e. for all r, r′ ∈ BBRCbi

it holds that b(r) = b(r′) and r � r′ or r′ � r. We
denote the backbone refinement class relation by �b.
Note that the classes are not disjoint for the same
backbone (but they are across different ones). For
example, in Figure 1, q1 and q3 are in different classes,
but q2 is in the respective classes of both q1 and
q3. The set of all backbone refinement classes for a
graph database R is called BBRCR. We also assume
a binary target class labelling function for the graphs.

(a) q1

(b) q2

(c) q3

Figure 1. Three example trees with the same backbone
(bold). Its sequence is ’c:c:c-C=C-O-C’ (reflecting that
the fragments include part of an aromatic ring). It also
holds that q1 �b q2 and q3 �b q2, but neither q1 �b q3

nor q3 �b q1. Therefore, q1 and q3 are not in the same
Backbone Refinement Class.

Backbone Refinement Class Representative Mining
(BBRC Mining). Given a graph database R, a user-
defined minimum support f and user-defined mini-
mum χ2 value u, for all B ∈ BBRCR, find the most
general of the most significant t ∈ B that is frequent,
i.e. supp(t, R) ≥ f , and significant with respect to
occurrence in the target classes, i.e. χ2(t, R) ≥ u.
The complexity of BBRC mining is upper-bounded by
the complexity of regular tree mining (Nijssen & Kok,
2004). We will however show that our approach de-
creases running times significantly for practical appli-
cations.

2. Methods

We modified the graph miner Gaston (Nijssen & Kok,
2004) to support BBRC mining1. Two specific prop-

1We used version 1.1 (with embedding lists), see
http://www.liacs.nl/~snijssen/gaston/.

erties allow for an efficient implementation: Gaston
first enumerates all path refinements, and only there-
after starts enumerating tree refinements growing from
all paths, thereby prohibiting backbone changes while
applying tree refinements recursively. Furthermore,
Gaston uses a very efficient canonical representation
for graphs. Specifically, no refinement is enumerated
twice, e.g., q2 in Figure 1.
For significance testing, the χ2 distribution test (in-
stead of the independence test commonly used in
graph mining) was employed. It is possible to calcu-
late an upper bound for the χ2 values of refinements
of a pattern (Morishita & Sese, 2000), which can be
used for antimonotonic pruning. Using a static, user-
defined upper bound threshold is referred to as static
upper bound pruning (Bringmann et al., 2006). To
speed up the search, we may increase this threshold
(dynamic upper bound adjustment). For any frequent
subtree q, let χ2(q, R) and χ2

u
(q, R) denote the χ2 value

for q and χ2 upper bound for refinements of q, respec-
tively. Let umax(q) = max{χ2(p, R) | p �b q}. Then,
if umax(q) > u, u may be increased to umax(q), since
we only search for the maximum class element.

3. Experiments

3.1. Descriptor Computation and Predictivity

We evaluated four types of fragment descriptors:
1. All Linear Fragments
2. Significant Trees : all trees that have minimum fre-
quency 6 and χ2 significance of 95 %.
3. Open Trees : the most general representatives of all
trees with the same occurrences from 2.
4. BBRC Representatives : the most significant repre-
sentatives of the backbone refinement classes from 2.
It should be pointed out that 3. and 4. form a sum-
marization of the features in 2.

3.2. Cross-validation

We used four chemical datasets obtained from the
Carcinogenic Potency Database (CPDB)2, version
08/04/29: Fragment types 1., 2., and 4. were cal-
culated with the proposed approach. For the open
trees (3.), we used the method by Bringmann et
al. (Bringmann et al., 2006)3. Overall, fragment
set sizes could be reduced by 94 %, 91 % and 31
% through BBRC representatives compared to linear
subgraphs, significant trees and open fragments, re-

2http://potency.berkeley.edu/cpdb.html
3The authors kindly provided us with a binary of their

algorithm sfgm, pointing out that it may not be optimized
for speed and uses a breadth first search technique known
to be memory demanding.
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spectively. Furthermore, dynamic upper bound ad-
justment was associated with a reduction in running
time by 63.34 % and 60.92 % compared to using no
statistical pruning and static upper bound pruning, re-
spectively. The mined subgraphs were evaluated in a
leave-one-out cross-validation using a nearest-neighbor
approach. A paired t-test on the accuracy values
revealed that BBRC representatives perform signifi-
cantly better than open trees (mean accuracy > 75%),
while no significant difference between BBRC repre-
sentatives and the complete set of trees was observed.

3.3. Large-Scale Analysis

We performed experiments on parts of the NCI Yeast
Anticancer Drug Screen datasets4 (April 2002 release).
We used a subset of AC-one (stage 0) for cross-
validation, composed of all actives and an equal num-
ber of inactives sampled randomly from the dataset
(2*11,700 = 23,400 compounds). The second run, on
AC-All (stage 1), used all actives and inactives (in to-
tal, 5,248+5,300 = 10,548 compounds). For AC-one
(stage 0), the sfgm system computing open trees ter-
minated with an error, while BBRC representatives
took 4m52s. For AC-All (stage 1), open trees took
> 10h, BBRC representatives took 1m13s. This time,

AC-one (stage 0) AC-all (stage 1)
Sign. Trees 1,190,763 291,729
Open Trees ? 216,206
Max. Trees 556,673 148,562
BBRC Repr. 31,450 14,381

Table 1. Feature counts for AC-One (stage 0) and AC-All
(stage 1)

we investigated the set sizes of maximum patterns (the
positive border as implied by minimum frequency and
significance constraints (Al Hasan et al., 2007)) instead
of linear fragments. Table 1 shows BBRC representa-
tives had a very condensed representation of ≤ 5%;
Indeed, BBRC representatives turned out to be
the only practically useful feature type for cross-
validation. With open trees, we obtained impracti-
cal prediction times of > 60s and unacceptable RAM
usage, whereas BBRC representatives gave a mean of
4.7s and 11.1s, respectively, and accuracy of > 70%.

4. Conclusion

Backbone Refinement Classes are a particularly useful
class of subgraphs for mining databases of chemical
compounds. Due to their formal properties, BBRCs

4http://dtp.nci.nih.gov/yacds/download.html

can be mined efficiently and searched by existing graph
mining systems like Gaston with only minor modifica-
tions. The overall method proves to be highly effi-
cient compared to mining significant and open trees,
dramatically reducing running time and the number
of features mined. The experimental results revealed
that the expressiveness of backbone refinement class
representatives is significantly higher than that of open
trees, because a lower number of features is associ-
ated with better accuracy, mainly due to higher speci-
ficity, reducing false alarms in classification tasks. The
mined tree structures form a sparse and structurally
diverse collection of patterns which cannot be guaran-
teed by occurrence summarization methods, such as
open or closed subgraphs. In our experiments with
large-scale datasets we showed that BBRCs can be
computed within reasonable time and used effectively
in simple predictive learning schemes.
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