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Abstract

Current graph kernels suffer from two limita-
tions: graph kernels based on counting par-
ticular types of subgraphs ignore the relative
position of these subgraphs to each other,
while graph kernels based on algebraic meth-
ods are limited to graphs without node la-
bels. In this paper we present the graphlet
spectrum, a system of graph invariants de-
rived by means of group representation the-
ory that capture information about the num-
ber as well as the position of labeled sub-
graphs in a given graph. In our experimen-
tal evaluation the graphlet spectrum outper-
forms state-of-the-art graph kernels.

1. Introduction

Over recent years, graph kernels have grown to be-
come an important branch of graph mining. Their
fundamental purpose is to represent a graph by fea-
tures in a reproducing kernel Hilbert space. While
most graph kernels derive these features by counting
particular types of subgraphs, such as walks, shortest
paths, subgraphs of fixed size k, or subtrees (Kashima
et al., 2003; Gärtner et al., 2003; Borgwardt & Kriegel,
2005; Borgwardt et al., 2007; Bach, 2008), recently, a
group theoretical approach was proposed and shown
to have state-of-the-art performance (Kondor & Borg-
wardt, 2008). However, both approaches have limita-
tions: in counting subgraphs, the graph-theoretic ap-
proach completely ignores the relative position of sub-
graphs within the graph, while the algebraic approach
suffers from the fact that it is restricted to unlabeled
graphs, which are rare in applications.
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In this work, we overcome these two limitations by
defining a new group-theoretic approach that allows
both for labeled subgraphs and considers the relative
position of subgraphs.

2. Graph invariants

Let us first introduce some notations. Let G be a di-
rected weighted graph of n vertices. We represent G
by its adjacency matrix A ∈ Rn×n, where [A]i,j ∈ R
is the weight of the edge from vertex i to vertex j. Sn
denotes the symmetric group of degree n. Given
a function f : Sn → R, the group structure suggests
defining the left–translate of f by π ∈ Sn as

fπ : Sn → R, fπ(σ) = f(π−1σ).

In terms of any complete set of inequivalent irreducible
representations {ρλ}λ`n of Sn the Fourier transform
of a function f : Sn → R is defined as the sequence of
matrices

f̂(λ) =
∑
σ∈Sn

f(σ) ρλ(σ) λ ` n.

Of the several properties of ordinary Fourier trans-
formation inherited by such generalized Fourier trans-
forms, we are particularly interested in the transla-
tion theorem, which, coupled with the unitarity of
ρλ(π), tells us that the matrices

â(λ) = f̂(λ)† · f̂(λ), λ ` n

are translation invariant.

Kondor and Borgwardt (2008) show that if we encode
the adjacency matrix in the function

fA(σ) = Aσ(n),σ(n−1), (1)

then permuting the vertices of G by π transforms fA
exactly into (fA)π.
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3. The graphlet spectrum

A common alternative to the algebraic approach pro-
posed in the above work is to characterize graphs in
terms of the frequency or position of certain elemen-
tary subgraphs embedded within them. Depending on
the context these small subgraphs are usually called
graphlets or motifs. Given a graphlet g of k < n
vertices whose adjacency matrix we denote with the
same letter g, the indicator

µg(v1, v2, . . . , vk) =

{
1 if gi,j ≤ Avi,vj ∀ i, j,
0 otherwise,

(2)

captures whether g is a subgraph of G at position
(v1, v2, . . . , vk). If we replace ≤ by = in (2), then the
corresponding indicator µind

g captures whether g is an
induced subgraph at the same position.

The fundamental observation motivating the present
work is that (at least for unweighted graphs), fA, as
defined in (1), can be re-written as

fA(σ) = µe(σ(n), σ(n−1)),

where e stands for the elementary graphlet of two ver-
tices and a single directed edge. In other words, fA
encodes where the edge e occurs in G as a subgraph.
It is easy to extend this idea to larger graphlets by

fA,g(σ) = µg(σ(n), σ(n−1), . . . , σ(n−k + 1)), (3)

or the same with µind
g . Crucially, fA,g will still obey

the same transformation property as fA did, since if
µπg is the indicator of the permuted adjacency matrix
Aπ, then

µπg (π(v1), π(v2), . . . , π(vk)) = µg(v1, v2, . . . , vk), (4)

hence µπg (v1, . . . , vk) = µg(π−1(v1), . . . , π−1(vk)),and
therefore

fAπ,g(σ) = µg(π−1σ(n), . . . , π−1σ(n−k+1)) =

fA,g(π−1σ) = (fA,g)π(σ). (5)

This means that we can invoke the machinery of power
spectra, skew spectra, etc. to derive graph invariants,
but these new invariants will be sensitive to the pres-
ence of entire subgraphs in G and not just individual
edges.

An attractive feature of our approach is that given a
small library g1, g2, . . . , gm of graphlets we can com-
pute a separate fA,gi function for each graphlet, and
then form invariants from all possible combinations of
these functions, capturing information about the rel-
ative position of different types of subgraphs as well

as different subgraphs of the same type. Since in this
case second order invariants already yield a rich set of
features, we forgo computing higher order, more ex-
pensive invariants, such as the skew spectrum. Our
exact definition of the graphlet spectrum is as follows.

Definition 1 Given a graph G of n vertices and adja-
cency matrix A, relative to a collection g1, g2, . . . , gm
of graphlets and an indicator function such as (2), the
graphlet spectrum of G is defined to be the sequence
of matrices

q̂i,j(λ) =
(
f̂A,gi(λ)

)† · f̂A,gj (λ), j ≤ i, λ ` n,
(6)

where fA,gi is defined as in (3).

Proposition 1 Each scalar component [q̂i,j(λ)]a,b of
the graphlet spectrum is a graph invariant.

4. Computational considerations

More often than not, the biggest challenge in applying
representation theoretical ideas to real world problems
is making the necessary computations scalable. In the
case of the graphlet spectrum at first sight it appears
that computing the Fourier transform (2) already de-
mands O((n!)2) time, which is clearly forbiddingly ex-
pensive. There are two key ingredients to reducing
this computational burden to a level that is feasible in
a practical algorithm: sparsity and the theory of fast
Fourier transforms.

Since the Fourier transform f 7→ f̂ is a unitary trans-
formation, the combined size of the f̂(λ) matrices ap-
pearing in (2) is n!. However, any f defined by (3)
is a so-called right Sn−k–invariant function. For such
functions most f̂(λ) Fourier components turn out to be
identically zero, and even the remaining components
will have a characteristic column-sparse structure.

The reason that f̂ can be efficiently computed is not
just that it is sparse, but that its sparsity struc-
ture is closely matched to the structure of the non-
commutative fast Fourier transforms that are gaining
popularity in the non-commutative harmonic analy-
sis community (Rockmore, 1997; Clausen, 1989). We
provide the following result without proof:

Proposition 2 If f : Sn → R is defined as in (3),
then in Young’s Orthogonal Representation its Fourier
transform can be computed in[

(n+ 1)n (n− 1)
3

− (m+ 1)m (m− 1)
3

]
n!
m!

(7)

scalar operations, where m is a shorthand for n − k.
For fixed k this expression grows as O(n2+k).
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MUTAG ENZYMES NCI1 NCI109
Number of instances/classes 188/2 600/6 4110/2 4127/2
Max. number of nodes 28 126 111 111
Graphlet spectrum 88.11 (0.46) 35.42 (0.58) 65.0 (0.09) 65.31 (0.08)
Reduced skew spectrum 88.61 (0.21) 25.83 (0.34) 62.72 (0.05) 62.62(0.03)
Graphlet count kernel 81.7 (0.67) 23.94 (0.4) 54.34 (0.04) 52.39 (0.09)

Table 1. Prediction accuracy in percent for the graphlet spectrum features and state of the art graph kernels on four
classification benchmarks in 10 repetitions of 10-fold cross-validation. Standard errors are indicated in parentheses. Best
results for each datasets are in bold.

We aim for applications involving medium sized graphs
(few hundred nodes), and a handful of graphlets with
k in the range 2 to 6.

5. Experiments and discussion

We assess the performance of the graphlet spectrum
features on several benchmark datasets of chemical
structures of molecules. The experiments consisted of
running SVMs on the above data using a linear kernel
on top of the the graphlet spectrum features. For com-
parison, we applied a linear kernel on the reduced skew
spectrum features from (Kondor & Borgwardt, 2008)
and a graphlet count kernel that counts the number of
common graphlets in two graphs (Shervashidze et al.,
2009). Both these kernels had been shown to outper-
form the classic random walk kernel (Gärtner et al.,
2003) in earlier studies.

One of the strengths of the graphlet spectrum is that
it allows the practitioner to use graphlets specifically
designed to pick out salient features, such as functional
groups in molecules. In our experiments we started
with a minimal set of graphlets and saw performance
increase as we added further ones one by one. The
graphlets used in our experiments were the following:

• MUTAG: C C, C C C, C C C C, C N,
O N, ∗ ∗;

• NCI1 and NCI109: C C, C N, C O, O N,
O O, N N;

• ENZYMES: ∗ ∗, α

α

α� @ , β

β

β� @ , α α,
α β, β β;

where ∗ − ∗ denotes an edge with arbitrary node la-
bels. For fair comparison in the graphlet count ker-
nel we used the same graphlets. Further experimen-
tation and incorporating more knowledge from chem-
istry could lead to a siginificantly more powerful sys-
tem of graphlets for organic molecules. It is important
to stress that computational time, while a constraint,
was not the limiting factor here. For enzymes α and
β denote α-helices and β-sheets, respectively.

Experiments show that on graphs of medium size (up

to a few hundred vertices) the graphlet spectrum is
compatible with state of the art graph kernels, and in
several cases outperforms all other methods. Theoret-
ical results from non-commutative harmonic analysis
and the representation theory of Sn, together with a
custom-built FFT library allow the graphlet spectrum
to scale up to real-world problems with relative ease.
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Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph
kernels: Hardness results and efficient alternatives.
Proc. Annual Conf. Computational Learning Theory
(pp. 129–143). Springer.

Kashima, H., Tsuda, K., & Inokuchi, A. (2003).
Marginalized kernels between labeled graphs. Proc.
Intl. Conf. Machine Learning (pp. 321–328). San
Francisco, CA: Morgan Kaufmann.

Kondor, R., & Borgwardt, K. (2008). The skew spec-
trum of graphs. Proc. Intl. Conf. Machine Learning
(pp. 496–503).

Rockmore, D. N. (1997). Some applications of gener-
alized FFTs. Proceedings of the DIMACS workshop
on groups and computation.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T.,
Mehlhorn, K., & Borgwardt, K. (2009). Efficient
graphlet kernels for large graph comparison. Pro-
ceedings of International Conference on Artificial
Intelligence and Statistics.


