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Abstract

There exists a wide variety of local graph
mining approaches that search for frequent,
correlated or closed patterns in graphs.
These methods typically return very large
sets of patterns which can then be used as
features to build classifiers. Here we take a
different approach: rather than mining for
all local patterns, we randomly sample from
the set of maximum common subgraphs. The
advantages are that maximum common sub-
graphs are easier to compute than frequent
or correlated patterns, and that the result-
ing features lead to classification models that
achieve significantly better predictive perfor-
mance than models built on the patterns re-
turned by traditional mining approaches.

1. Introduction

During the last decade, a lot of attention has been
devoted to mining local patterns in graphs leading to
the development of many graph mining systems (Yan
& Han, 2002; Bringmann et al., 2006). These systems
typically employ constraints to specify the patterns of
interest, such as frequency, or top-k according to a
correlation measure (e.g., χ2). Graph mining systems
typically perform a complete search through the en-
tire graph space enumerating all subgraphs satisfying
these constraints. Usually the resulting patterns are
not used directly. Instead, they are used as features
in traditional machine learning algorithms. Further-
more, the quality of the generated patterns is mea-
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sured through the quality of the induced classifiers or
models for regression (Wale et al., 2008). While these
approaches offer strong guarantees w.r.t. completeness
or optimality, they have a high computational cost and
require post-processing to deal for example with re-
dundancy issues (Bringmann et al., 2006). In this way,
local pattern mining acts as a complex, expensive and
indirect approach to generate features for graphs.

In this abstract we propose a direct, efficient and sim-
ple approach for the generation of interesting graph
patterns. This method is related to the work of
(Chaoji et al., 2008), who also found that good pat-
terns are obtained by sampling under diversity con-
straints. Our idea is to compute maximum common
subgraphs from randomly selected pairs of examples
and directly use them as features. The advantages of
this approach are 1) that it is easy to control the num-
ber of produced features (while setting the frequency
in a pattern mining task yields an unpredictable num-
ber of patterns); 2) that patterns can be extracted
more efficiently than by frequent or correlated sub-
graph mining, as no search space has to be traversed;
and 3) that on a number of benchmark problems from
NCI, the extracted features allow to build SVM classi-
fication models that achieve significantly better predic-
tive performance than those built on features returned
by traditional local pattern mining approaches.

2. Method

A maximum common subgraph (MCS) of two graphs
G and H is a graph I which is subgraph isomorphic
to G and H and there exists no other graph J which
is also subgraph isomorphic to G and H and |J | > |I|.
Outerplanar graphs are graphs which can be embed-
ded in the plane such that all of their vertices lie on
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the boundary of the outer face. It is known that 95%
of the molecules in the NCI datasets are outerplanar.
Outerplanar graphs consist of blocks and bridges. A
block is a maximum subgraph for which every two ver-
tices are involved in a cycle, while a bridge is an edge
that does not belong to a block.

Even though computing the MCS between two general
graphs is NP-hard, it is possible to compute the MCS
between two outerplanar graphs in polynomial time by
using the block-and-bridge preserving (BBP) subgraph
isomorphism (Schietgat et al., 2008). This is a variant
of the general subgraph isomorphism that only maps
blocks to blocks and bridges to bridges.

In this abstract, we use the MCS algorithm of (Schi-
etgat et al., 2008) to generate patterns in graph-based
data by computing the MCS between randomly se-
lected pairs of graphs in the input data. The use of this
algorithm has a few implications. Firstly, it can only
be used to mine the outerplanar graphs. For feature
generation, this does not pose a problem since the pat-
terns can still be embedded in non-outerplanar exam-
ples by using the general subgraph isomorphism. Sec-
ondly, only outerplanar patterns are generated. How-
ever, our experiments below have shown that a cor-
related subgraph mining approach does not find non-
outerplanar patterns either. Thirdly, while sampling
MCSs, duplicate patterns can be generated. There-
fore, we check every time a new MCS is sampled
whether it is isomorphic to already found MCSs. Be-
cause of the BBP subgraph isomorphism this can also
be done in polynomial time. Lastly, the use of the BBP
subgraph isomorphism introduces a bias on the learned
patterns. For example, ring structures are either en-
tirely included in the patterns or not at all. Keeping
ring structures and linear fragments apart seems to
make sense from a chemical viewpoint.

3. Experiments

In order to evaluate the properties and the quality
of the extracted subgraphs as features for predictive
tasks, we give an experimental answer to the following
questions: Q1 What is the difference in predictive per-
formance between the features generated by maximum
common subgraph mining and a correlated subgraph
mining system? Q2 Are the patterns returned by the
MCS procedure less redundant than those returned by
a correlated pattern mining procedure? Q3 How does
the predictive performance vary w.r.t. the number of
sampled MCSs? Q4 Is there a significant difference
between sampling randomly and selecting the top-k
correlated MCSs or the top-k frequent MCSs? Q5
How many pairs of molecules need to be sampled in

Figure 1. Predictive performance of the different sampling
approaches on 10 NCI datasets.

order to obtain k unique MCSs and how much time
does this take?

Datasets We use 10 randomly selected datasets from
the NCI cancer dataset collection (Swamidass et al.,
2005), which contain molecules and their ability to
suppress or inhibit the growth of human tumour cell
lines. Each dataset has on average 3,500 examples with
a balanced binary class distribution.

Methodology Each example is propositionalized into
a bitvector encoding to represent the occurrence of
the mined patterns. SVMs in combination with the
Tanimoto-kernel (Swamidass et al., 2005) were used as
classification model. The area under the ROC-curve
(AUROC) score is reported for all experiments using a
stratified 10-fold cross-validation. Patterns are mined
only from training data. The regularization param-
eter of the SVM is tuned running an internal 5-fold
cross-validation over the training data. Statistical sig-
nificance is assessed either using a sign test from the
win/loss-ratio or noticing that generalization to other
molecules from the same population is significantly
better at the 1% level for samples of ≈3,500 molecules
when an increase of 2.5% in AUROC is measured.

Results
Q1 We compare 1000 randomly selected MCSs (re-
sults are averaged over 10 runs) to the 1000 most χ2

correlated patterns (extracted with the system from
(Bringmann et al., 2006)) over the 10 datasets. Fig-
ure 1 shows a clear advantage for the MCS approach.

Q2 We compute the percentage of examples from the
test set (averaged over the 10 datasets) with a unique
encoding (uniqueness) and the percentage of examples
belonging to the largest cluster of examples that have
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Table 1. Redundancy evaluation of 4 pattern sets.

Mining approach Uniqueness Redundancy

1000 randomly selected MCSs 98.328±0.003 0.355±0.014
1000 most frequent MCSs 96.846±0.004 0.820±0.055
1000 most correlated MCSs 91.115±0.018 1.358±0.211
(Bringmann et al., 2006) 56.590±4.351 17.748±4.807

Figure 2. Relationship between size of molecule-pairs set
and size of unique MCS set.

the same encoding (redundancy). Table 1 shows that
MCSs provide more discriminative encodings.

Q3 We measure predictive performance as we increase
the number of randomly sampled MCSs: for 100, 200,
400, 800, 1600, 3200 and 6400 patterns, an AUROC of
respectively 75.0, 76.7, 78.0, 79.0, 79.8, 80.3 and 80.5
is obtained (averaged over 5 datasets).

Q4 We measure predictive performance over 10
datasets using all unique MCSs (≈ 7500), 1K most
χ2 correlated MCSs, 1K most frequent MCSs and 1K
randomly selected MCSs (averaged over 10 runs). Fig-
ure 1 shows that the random sampling approach is sig-
nificantly better than the correlated mining one.

Q5 We have experimentally determined (Fig. 2) that
to obtain 1K different MCSs we need 45K pairs of ran-
domly sampled molecules or a random sample of 400
molecules out of which to consider all possible pairs1.
We have observed an almost perfect linear relationship
(with coefficient 2.6) between the number of molecules
and the number of different MCSs, that is: given a set
of 1K molecules, extracting the MCSs from all pairs
gives 2.6K unique MCSs.

Runtimes Mining the 1000 most χ2 correlated graphs
with correlated pattern mining takes on average 2

1Note that 400 molecules generate 160K pairs, a larger
number due to the reduced diversity of the molecules in-
volved in the pairs.

hours, while sampling 1000 unique MCSs takes on av-
erage 28 minutes, achieving a 400% speedup.

4. Conclusions and Future Work

We have shown that sampling from the set of pair-
wise maximum common subgraphs is a competitive
strategy w.r.t. enumerating all correlated subgraphs
(which in turn is a better strategy than enumerating
all frequent subgraphs). We conjecture that the rea-
son is that the sampling strategy achieves a greater
diversity in the set of returned solutions thus better
controlling the redundancy issue. Moreover, the em-
ployed bias (i.e. BBP subgraph isomorphism and pair-
wise maximal commonality) guarantees that, at least
in the case of small molecules, the returned subgraphs
are not only non-redundant but also interesting fea-
tures for biological activity prediction tasks. We note
that this approach has a wider applicability than the
specific molecular context.

Possible extensions include the exploration of different
sampling strategies to further reduce computational
costs and the use of different language bias (e.g., max-
imum common subtrees or subsequences).
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