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Abstract

This paper presents a novel collective classifica-

tion approach that classifies entities of a net-

work using their local structure. Moreover, a new

node similarity measure based on random walks,

which takes into account label uncertainty and

the degree of nodes, is introduced. Through ex-

perimentation on real-life datasets from different

domains, we show our method to outperform sev-

eral state-of-the-art approaches for this problem.

Within-network classification, where the goal is to
classify the nodes of a partly labeled network, is a semi-
supervised learning problem that has applications in
several important domains like image processing, the
classification of documents and web pages, classifying
gene expression data, part-of-speech tagging, detect-
ing malicious activities, and recommending items.

Because of the interdependence of labels in network
data, approaches for this problem normally infer the
class labels simultaneously, a technique known as col-
lective classification (Macskassy & Provost, 2007).
Methods based on this principle can generally be di-
vided in the groups of exact and approximation in-
ference methods. Exact inference methods, such as
Markov Random Fields (Lafferty et al., 2001), Markov
Logic Networks (Domingos & Richardson, 2004) and
Relational Bayesian Networks (Taskar et al., 2001),
learn the joint probability distribution of class labels.
However, due to the high complexity of exact infer-
ence, approximation methods, like Loopy Belief Propa-
gation (Yedidia et al., 2005), Relaxation Labeling (RL)
(Chakrabarti et al., 1998), and Iterative Classification
(IC) (Lu & Getoor, 2003; Neville & Jensen, 2005) are
usually used for larger networks.

The methods proposed for within-network classifica-
tion are generally based on the homophily hypothe-
sis that linked or nearby nodes are likely to have the
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same labels. While evidence suggests this to apply
to several types of networks, such as social networks
(Barabasi et al., 2002), there are many other types
of network, like molecules and biological networks, for
which this assumption fails. Furthermore, while a few
of these methods use information on nearby nodes to
infer the class labels, e.g., (Lu & Getoor, 2003; Perlich
& Provost, 2006), only the distribution of labels in this
neighborhood is considered, not its structure.

Contributions

This paper makes two contributions to the problem
of within-network classification. First, it introduces a
novel collective classification framework that extends
the relaxation approach described in (Macskassy &
Provost, 2007). While our method also uses similarity
between nodes to define the class membership proba-
bilities, it is more general in the sense that it allows the
use of complex similarity measures that are not based
on a vectorial representation of the neighborhood.

Secondly, although methods based on random walks
have recently been proposed for this problem (Callut
et al., 2008; Zhu et al., 2003), such methods eval-
uate the proximity between nodes (indirectly) based
on the number and length of paths connecting them,
thus subscribing to the homophily assumption. Fol-
lowing the success of structural kernels on the prob-
lem of graph classification (Borgwardt et al., 2005;
Li et al., 2007), we present a novel relational classi-
fier that extends marginalized graph kernels (Kashima
et al., 2003) by including label probabilities and node
degrees in the computation of structural similarity. As
we will show in the experimental section of this paper,
considering the local structure of a node in the network
can yield better classification results than simply con-
sidering the label distribution of neighbor nodes.

1. A novel classification approach

We model networked data as a partially labeled graph
G = (V,E,W,LV , LE , l) where V is a set of nodes,
E a set of edges between the nodes of V , W ⊂ V is
the set of nodes for which the true labels are known,



Within-network classification using local structure similarity

LV and LE are respectively the sets of node and edge
labels, and l is a function that maps each node and
edge to a label of the corresponding set. We write lv
the label of a node v ∈ V and lu,v the label of an edge
(u, v) ∈ E. Denoting U the set of unlabeled nodes of
G, i.e. U = V \W , the within-network classification
problem consists in assigning to each u ∈ U a label in
LV based on the labels of nodes in W .

Our classification approach is comprised of two ele-
ments: a collective inference algorithm based on RL,
and a structure similarity measure based on random
walks.

1.1. Relaxation labeling framework

As other RL methods, our approach works by itera-
tively updating the label probabilities of each unla-
beled node until convergence. For any node v ∈ V
and any label k ∈ LV , we denote πv,k the probabil-
ity of v to have label k. If the true label of a node
w is known, i.e. w ∈ W , then this value is binary:
πw,k = δ (lw = k), where δ is the Kronecker delta. Fur-
thermore, let sim : V 2 → R be a function that evalu-
ates the similarity between two nodes, the probability
of an unlabeled node u ∈ U of having label k ∈ LV is
computed from the other nodes as

πu,k =

∑
v∈V

παv,k sim(u, v)∑
v∈V

παv,k
, (1)

where α ≥ 0 is a user-supplied parameter that controls
how label uncertainty influences the computation of
πu,k. Thus, by increasing the value of α, one can give
more importance to nodes for which the true label is
known.

1.2. Random walk structure similarity

Our approach to evaluate the local structure simi-
larity of two nodes is based on marginalized graph
kernels (Kashima et al., 2003), which compute simi-
larities as the probability of generating the same se-
quence of labels in two parallel random walks. While
a more general approach, using product graphs, has
been proposed to compute the structural similarity be-
tween graphs (Gaertner et al., 2003), the probabilistic
framework of marginalized kernels is better suited to
cope with the label uncertainties of our RL method.
We should also mention that other types of kernels
have been proposed to measure the similarity between
nodes, such as exponential and diffusion kernels (Kon-
dor & Lafferty, 2002), kernels using regularization op-
erators (Smola & Kondor, 2003), and kernels based on
random walks (Callut et al., 2008; Zhu et al., 2003).

However, these kernels are mostly based on the physi-
cal proximity of the nodes in the graph, not their struc-
tural similarity.

Our similarity measure differs from marginalized ker-
nels in two respect. First, it evaluates the similar-
ity between two nodes of a same graph, instead of
between two different graphs. Accordingly, the sim-
ilarity between two nodes u and u′ is defined as the
probability of generating the same sequence with ran-
dom walks starting at u and u′. Secondly, the labels
of some nodes are only known as a probability. To
cope with this problem, we make the label generation
stochastic such that label k is generated at node v with
probability πv,k.

Using a constant walk termination probability γ, a
node transition probability uniformly distributed over
the edges leaving a node, as shown in (Desrosiers &
Karypis, 2009), the probability R(N)

u,u′ of generating the
same sequences of at mostN labels starting from nodes
u and u′ can be expressed recursively as

R
(N)

u,u′ =
(1− γ)2

dudu′

X
v∈Nu

X
v′∈Nu′

X
k∈LV

δ (lu,v = lu′,v′)

πv,kπv′,k

“
γ2 +R

(N−1)

v,v′

”
, (2)

where Nu is a set containing the neighbors of a node
u and du = |Nu| is the degree of u. To compute the
kernel, we use an bottom-up iterative approach, where
(2) is used to compute R(N) based on R(N−1). We
repeat this process for increasing values of N , until
the similarity values converge, i.e. the average change
is smaller than a given ε, or N reaches a given limit
Nmax.

Exploiting node degrees

A problem with this definition is that it does not con-
sider the difference between the degrees of two nodes
u and v, while evaluating their similarity. To illus-
trate this, suppose we limit the walk length in (2)
to Nmax = 1, i.e. we consider only the direct neigh-
bors. Moreover, suppose that the label of every node is
known, i.e. πu,k = δ (lu = k). Under these constraints,
the similarity kernel becomes

sim(u, v) =
(1− γ)2γ2

dudv

X
k∈LV

nu,k nv,k,

where nu,k ≤ du denotes the number of neighbors of
u that have label k. Using this formulation, the local
structure similarity between the nodes u,v of Figure 1
(a)-(b) is equal to their “self-similarity”: sim(u, u) =
sim(v, v) = sim(u, v) = 1

2 (1− γ)2γ2.

In order to consider the difference in the node degrees,
we add temporary edges to a dummy node of label
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Figure 1. (a)-(b) The neighborhood of two nodes u, v and
(c) the transformed neighborhood of v.

∅ 6∈ LV such that both nodes have the same degree,
as shown in Figure 1(c). With the same probability
as the true neighbors, the random walk can jump to
this dummy node, after which the probability of gen-
erating the same sequence becomes null. Under this
modification, (2) becomes:

R
(N)

u,u′ =
(1− γ)2

max{du, du′}2
X

v∈Nu

X
v′∈N′

u

X
k∈LV

δ (lu,v = lu′,v′)

πv,kπv′,k

“
γ2 +R

(N−1)

v,v′

”
. (3)

Using this new formulation, the similarity values for
nodes u and v, again limiting the walk length to
Nmax = 1, are sim(u, u) = sim(v, v) = 1

2 (1 − γ)2γ2 ≥
1
4 (1− γ)2γ2 = sim(u, v).

1.3. Convergence and complexity

While the convergence of the similarity kernels defined
above can be shown (Desrosiers & Karypis, 2009), the
collective classification method presented in this pa-
per, as most RL methods, is not guaranteed to con-
verge. However, by limiting the number of allowed
iterations to Tmax, we can still obtain a solution in the
non-converging case. Furthermore, while the classifi-
cation process can be expensive in the worst-case, i.e.
O
(
TmaxNmaxd

2
max|LV ||V |2

)
, its complexity is closer to

O(|V |2) in practice due to four reasons: 1) there are
much less node labels than nodes, 2) the nodes of many
real-life graphs have a low bounded degree (e.g., molec-
ular graphs), 3) the relevant structural information of
a node is contained within a short distance, and 4) the
RL algorithm normally converges in a few iterations,
regardless of |V |.

2. Experimental evaluation

2.1. Experimental setting

We tested our classification approach on five datasets.
The first three datasets, which are available online at
the IAM Graph Database Repository1, were originally
used for the prediction of mutagenicity, AIDS antivi-
ral activity, and protein function. The first two model
chemical compounds as undirected graphs where the
nodes represent atoms, node labels are the chemical
symbols of these atoms, and edges are covalent bonds

1
http://www.iam.unibe.ch/fki/databases/iam-graph-database

between atoms. Edge labels give the valency of these
bonds. The third dataset models proteins into undi-
rected graphs using their secondary structure, such
that nodes are secondary structure elements (SSE) la-
beled as helix, sheet, or turn. Every node is connected
with an edge to its three nearest neighbors2 in space,
and edges are labeled with their structural type.

Finally, the last two datasets, which were created for
the WebKB project, contain graphs modeling the links
between Web pages collected from computer science
departments of the Cornell and Texas Universities.
These two datasets, available online3, have often been
used to benchmark within-network classification meth-
ods, as in (Macskassy & Provost, 2007). While the link
information is sometimes converted into a co-citation
graph, we evaluate our approach directly on the orig-
inal Web page link graph. Furthermore, we consider
the multi-class classification problem where pages can
have one of six types: student, faculty, staff, depart-
ment, course and project. Finally, while they are used
in the evaluation of other methods, the edges weights
representing the number of links between two Web
pages, are ignored by our methods.

Table 1. Properties of the datasets.

Property Mutagen. AIDS Protein Cornell Texas
Nb. graphs 4,337 2,000 600 1 1
Avg. nodes 30.3 15.7 32.6 351 338
Avg. edges 30.8 16.2 62.1 1392 986
Node labels 14 38 3 6 6
Edge labels 3 3 5 1 1
Freq. class 44.3% 59.3% 49.4% 41.5% 48.1%

Table 1 gives some properties of these datasets: the
number of graphs, the average number of nodes and
edges of these graphs, their number of node and edge
labels, and the percentage of nodes having the most
frequent class label.

The five datasets were used differently in our experi-
ments. For the first three ones, which contain many
small graphs, we randomly sampled six sets of 100
graphs and then merged the graphs of each of these
sets into larger test graphs, considering the small
graphs as individual components of the larger ones.
These test graphs have 1500 to 3500 nodes, depend-
ing on the dataset. We then randomly selected one of
these test graphs to tune the parameters of the tested
methods and used the five others to evaluate their per-
formance. For each of these five test graphs, 10 runs
were performed, where we randomly selected a sub-
set of nodes from which we removed the labels. We
then computed the F1-score using the precision and

2
Note that a node can have more than three neighbors since the

relation “nearest-neighbor” is not symmetric.
3
http://netkit-srl.sourceforge.net/data.html
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recall obtained for each class, weighted by the num-
ber of nodes in these classes, and averaged this value
over the 5 × 10 classification runs. For the graphs
of the last two datasets, parameters were tuned using
another WebKB dataset modeling the links between
Web pages of the University of Washington. As with
the other datasets, 10 runs were performed on each of
these two graphs and the F1-scores were averaged over
these runs.

As suggested in (Macskassy & Provost, 2007), we com-
pared our approaches using the structural similarity
of (2) and (3), respectively named RL-RW and RL-
RW-deg, with five classification methods implemented
in NetKit-SRL4: IC with the Bayesian classifier of
(Chakrabarti et al., 1998) (called IC-NOB), IC with
the logistic regression using the [raw/normalized] num-
ber of neighbor labels (Lu & Getoor, 2003) (called
IC-NOLB-[count/norm]), RL using a weighted aver-
age of the neighbor labels (Macskassy & Provost,
2003) (named RL-WVRN), and RL using similarity
with reference label distribution vectors (Macskassy &
Provost, 2007; Perlich & Provost, 2006) (named RL-
CDRN). Note that we have tried IC as well as RL for
all these classification approaches but only report the
one giving the best results.

2.2. Results

Figures 2 give the F1-scores obtained by the seven
tested methods on the five datasets, for decreasing
percentages of labeled nodes. From these results,
we can see that our structural similarity considering
node degrees, i.e. RL-RW-deg, largely outperforms
the other classification methods for datasets where the
homophily assumption does not hold (i.e. molecular
graphs), especially when a small portion of nodes are
labeled. Moreover, our classification approach consid-
ering node degrees also works well on types of data
where the local structure is not so correlated with the
type of a node, such as Web page link graphs, where
it is as good as the best NetKit-SRL methods.
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