
Mining graphs to discover new theorems in mathematics

Christian Desrosiers desros@cs.umn.edu

University of Minnesota (DTC), 117 Pleasant Street SE, Minneapolis MN 55455 USA

Philippe Galinier philippe.galinier@polymtl.ca
Alain Hertz alain.hertz@gerad.ca

Ecole Polytechnique de Montreal, C.P. 6079 succ. Centre-ville, Montreal, QC H3C 3A7 CANADA

Pierre Hansen pierre.hansen@gerad.ca

HEC Montreal, 3000, ch. Cote-Sainte-Catherine, Montreal, QC H3T 2A7 CANADA

Abstract

This paper introduces a new data mining
problem of characterizing a class of graphs
with a set of forbidden subgraphs. Efficient
methods for this problem are presented, and
the potential of these methods illustrated on
the task of discovering novel and significant
results in the field of graph theory.

One of the main problems of data mining is the ex-
traction of patterns that characterize a set of graphs
sharing a common property. A well-known example of
this problem is the task of finding the subgraphs oc-
curring frequently in a set of graphs (Nijssen & Kok,
2004; Yan & Han, 2002), which has several applica-
tions in the fields of bioinformatics, drug design, com-
puter vision, and the Web. Instead of describing a set
of related graphs using co-occurring subgraphs, it may
be more appropriate to characterize these graphs with
subgraphs that are not allowed to occur. These forbid-
den subgraphs can represent underlying constraints or
inhibitors that block a given property from being ex-
pressed in a set graphs, and can be used to produce a
compact description of these graphs.

The work presented in this abstract makes three con-
tributions. First, it introduces a new data mining
problem of characterizing a class of related graphs with
a set of forbidden subgraphs, that has several poten-
tial applications. It also presents efficient methods to
find such characterizations in an automated fashion,
as well as necessary or sufficient conditions to have a
characterization. Finally, it illustrates the potential of
these methods in the discovery of novel and significant

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

results in the field of graph theory.

1. Forbidden subgraph characterization

Denote by G the space containing all graphs and let
H ⊂ G be a set of forbidden subgraphs. We say that
a graph G ∈ G is H-free if there is no graph of H iso-
morphic to one of its subgraphs, and write GH the set
of H-free graphs. Note that we do not impose restric-
tions on the type of subgraphs, i.e. they can be either
node or edge induced, depending on the application.
In all cases, we use the notation G ⊆ H to denote that
G is contained in H, i.e. is isomorphic to a subgraph
of H.

Consider a class of graphs C ⊂ G that we want to char-
acterize. This class can either be described explicitly,
or implicitly with a predicate c : G → {true, false} such
that c(G) = true only if G ∈ C. A forbidden subgraph
characterization (FSC) of C is a set of graphs H such
that GH = C. FSCs play a key role in graph theory,
being at the center of many important results of that
field (Chudnovsky et al., 2006), and allowing the devel-
opment of efficient algorithms to recognize the graphs
of a given class (Faudree et al., 1997).

For a class C to have an FSC, it is well-known that this
class should be hereditary (Greenwell et al., 1973), i.e.
if G is in C then so are all its subgraphs. However, such
classes are rare and we might instead be interested
in finding weaker relations that partially character-
ize graph classes. These relations come in two forms:
sufficient conditions (SFSC) and necessary conditions
(NFSC). Sufficient conditions can be expressed as: if
a graph G is H-free, then it belongs to C. Therefore,
an SFSC is such that GH ⊆ C. On the other hand,
necessary conditions can be expressed as follows: if a
graph G is in C then it is H-free. This implies GH ⊇ C
for NSFCs.

Mining graphs to discover new theorems in mathematics

1.1. Usefulness of characterizations

While a class C can have many SFSCs and NFSCs,
these may not be equally interesting. To find use-
ful characterizations, we define two partial orders that
measure their complexity and tightness. Evaluating
the absolute complexity of a characterization H can
be subjective, e.g., a clique has a maximum number of
edges but is rather simple to describe. Instead, we use
a relative measure of complexity: H is simpler than
H′ if H 6= H′ and, for each H ∈ H, there is a H ′ ∈ H′
such that H ⊆ H ′. On the other hand, the tightness
of a characterization evaluates how well it describes
C, and is evaluated differently for SFSCs and NFSCs.
Let H, H′ be two SFSCs of C, we say that H is tighter
than H′ if GH′ ⊂ GH. Likewise, we say that an NFSC
H is tighter than another one H′ if GH ⊂ GH′ . In both
cases, H is maximally tight if GH = C. The concepts of
tightness and complexity are related: a tighter SFSC
can generally be obtained by increasing its complexity.

1.2. Finding sufficient conditions

An SFSC of a class C can be written as G is H-free⇒
G ∈ C. This is logically equivalent to G ∈ C ⇒ ∃H ∈
H s.t. H ⊆ G, where C = G\C is the complement of
class C. Thus, the problem of finding an SFSC with
a single forbidden subgraph H can be formulated as
finding a set H = {H} such that ∀G ∈ C, H ⊆ G. The
forbidden subgraph H is therefore a common subgraph
of the graphs in C. Furthermore, suppose we have two
SFSCs H, H ′ such that H ⊂ H ′. It can be shown that
G{H} ⊂ G{H′} ⊆ C. As a consequence the SFSC that
offers the tightest characterization of C is a common
subgraph of C which is maximal w.r.t. inclusion. This
principle serves as the main idea of our first method,
detailed in Algorithm 1. This algorithm computes a
set L of representative graphs of C. At each iteration
i, it finds a maximum common subgraph of the graphs
in L, i.e. a graph H in maxCS(L). It then tries to find
a representative graph G of C that does not contain H.
If such a graph exists, it is added to L and the process
is repeated. Otherwise, H is an SFSC of C.

Algorithm 1 Single graph SFSC algorithm
Input: A graph class C
Output: A single graph SFSC H of C
Choose any H0 in C.
Let L0 ← {H0}, and i← 0.

while ∃Gi ∈ C ∩ G{Hi} do
Let Li+1 ← Li ∪ {Gi}.
Choose Hi+1 in maxCS(Li+1).
Let i← i+ 1.

end while
return H = {Hi}.

Note that it is always possible to find an SFSC for any
given class of graph C. For instance, letting H be an
empty graph, we have G{H} = ∅ ⊂ C and therefore
H is a SFSC of C. However, this SFSC may not be a
tight description of C. As mentioned before, it is possi-
ble to increase the tightness of this SFSC by increasing
its complexity, i.e. allowing it to have more than one
forbidden subgraph. To find SFSCs involving an ar-
bitrary number K of forbidden subgraphs, we proceed
as follows. We first use Procedure 2 to find the K−1
smallest graphs M of C. Then, we find a single graph
SFSC H of C ∩GM. The K graph SFSC of C is simply
H =M∪ {H}.

Procedure 2 findMin(C,L)
Input: A graph class C and an integer L>0
Output: At most L of the smallest graphs of C
Let M0 ← ∅ and l← 0.
while C ∩ GMl 6= ∅ and l < L do

Choose Hl ∈ C ∩ GMl with minimum order.
Let Ml+1 ←Ml ∪ {Hl}.
Let l← l + 1.

end while
returnM =Ml.

1.3. Finding necessary conditions

As opposed to finding SFSCs, the task of finding an
NFSC of a class C corresponds to finding a graph H
such that, for all G ∈ C, H 6⊆ G. Thus, H is a graph
that is not a subgraph of any graph of C. Moreover, let
H and H ′ be two NFSCs such that H ⊂ H ′. We can
show that C ⊆ G{H} ⊂ G{H′}. Therefore, the tightest
NFSC is a graph H which is minimal w.r.t. inclusion.
Our single graph NFSC method, detailed in Algorithm
3, is based on this idea. Let GH = G \ GH be the set
of graphs containing at least one graph of H, and de-
note minNS(L) the set of minimal graphs that are not
subgraphs of any graph of L. Starting with an empty
graph H, we find at each iteration a representative
graph G of C that contains H. If no such graph exists,
then H is an NFSC of C. Otherwise, we add G to L
and find a better forbidden subgraph H as one of the
graphs of minNS(L). Since C may not have an NSFC,
we have to limit the number of nodes of H to a value
N , otherwise the algorithm may never terminate. In
practice, N is selected as the highest integer for which
the algorithm terminates in a reasonable amount of
time.

As it was the case for sufficient conditions, we can
sometimes improve the tightness of an NFSC by al-
lowing it to have more than one subgraph. It can be
shown that the NFSC H of a class C with maximum
tightness is simply the minimal set containing all in-

Mining graphs to discover new theorems in mathematics

Algorithm 3 Single graph NFSC algorithm
Input: A graph class C and an integer N>0
Output: A single graph NFSC H of C having at most
N nodes
Let H0 be the empty graph, L0 ← ∅, and i← 0.
while ∃Gi ∈ C ∩ G{Hi} and |V (Hi)| ≤ N do

Let Li+1 ← Li ∪ {Gi}.
Choose Hi+1 in minNS(Li+1).
Let i← i+ 1

end while
return H = {Hi}.

dividual graphs that are, by themselves, NFSCs. Al-
though not presented in this paper, the algorithm to
find NFSCs involving multiple forbidden subgraphs is
based on this principle.

1.4. Link to Version Space

The tasks of finding SFSCs and NFSCs are related,
in many respect, to the problem of learning a descrip-
tion of a class of patterns (Kramer et al., 2001). In
this problem, we have a space P of patterns partially
ordered under a relation of generality. For any two
patterns X,Y of P, we denote by X ≺ Y the fact that
X is more general than Y (or equivalently, Y is more
specific than X), and write the minimal and maxi-
mal patterns of a set Q ⊂ P as min(Q) and max(Q).
The problem consists in learning a description of the
patterns, called Version Space (VS), consistent with
a given set of constraints c : P → {true, false} that
should be either monotone or anti-monotone w.r.t.
generality.

Denote by Q the set of patterns satisfying these con-
straints, the VS description of Q is given by the gen-
erality and specificity borders, i.e. B+ = max(Q) and
B− = min(Q), such that

Q = {Y ∈ P | ∃X ∈ B+,∃Z ∈ B− s.t. X � Y � Z}.

The VS of the pattern class is typically obtained us-
ing a levelwise approach, where patterns of increasing
specificity are generated and then tested against the
constraints. See, e.g., (Kramer et al., 2001) for de-
tails.

In the context of characterizing a class C with SF-
SCs or NFSCs, the order of generality between two
graphs G and H corresponds to the subgraph rela-
tion, i.e. G ≺ H ⇔ G ⊂ H, and C is hereditary if
the constraint c(G) ≡ (G ∈ C) is anti-monotone. In
this context, it can be showed that the unique tightest
FSC of C is the generality border B+ of the graphs
satisfying c, i.e. max(C). Moreover, when such FSC
does not exist, the set of the tightest single graph
SFSCs corresponds to the specificity border B− of

the patterns G satisfying the anti-monotone constraint
support(G, C) = |C|, i.e. G should be a subgraph of
every graph of C. On the other hand, the set of the
tightest single graph NFSCs is equivalent to the gener-
ality border B+ of the patterns H consistent with the
constraint support(H, C) = 0 imposing the support of
H in C, i.e. the number of graphs of C containing H,
to be 0.

There are, however, important differences between our
approach and VS. Thus, while VS builds a possibly
infinite border, our approach focuses on finding a sin-
gle tightest NSFC or SFSC by generating a limited
number of representative graphs. Also, our approach
avoids the need to define impracticable constraints
such as support(G, C) = |C|, where C is most likely
infinite. Finally, while it is possible to define the VS
patterns as sets of graphs, instead of single graphs, our
approach provides a simple way to find tighter SFSCs
that have more than one forbidden subgraph.

2. Automated conjecture generation

In recent years, mathematicians in the field of graph
theory have turned to computers to find some very im-
portant results. A famous illustration of this is the
proof to the four color conjecture, which was done
in large part by computers (Robertson et al., 1997).
Although automated methods have already been pro-
posed for generating conjectures in graph theory, such
as Graffiti (Fajtlowicz, 1988) and AutoGraphiX
(Caporossi & Hansen, 2000), these methods focus on
finding relations defined on graph attributes known as
invariants, that hold for every graph in a given class
C. As addressed in (Hansen et al., 2005), automated
methods for finding other types of results have not
been explored. Following this observation, we use our
methods to generate conjectures on FSCs.

2.1. Computational approach

A problem with Algorithms 1 and 3 is that they may
need to explore an infinite set of graphs. To overcome
this problem, we limit the search space to graphs hav-
ing at most N nodes. As a consequence, our algo-
rithms are no longer guaranteed to find SFSCs or NF-
SCs. Yet, we can still use these algorithms to generate
conjectures based on the hypothesis that if these re-
sults are true for graphs of N or less nodes, they must
be true for all graphs.

To find the representative graphs of C and C, or the
graphs of maxCS(L) and minNS(L), we use a gener-
ate and test approach. In this approach, graphs are
enumerated up to N nodes using an algorithm such

Mining graphs to discover new theorems in mathematics

as GenG (McKay, 1998) and then tested for member-
ship in these classes. While enumerating graphs up to
N=10 nodes can be done quite rapidly, testing mem-
bership usually requires to solve a complex problem
for a large number of graphs. For instance, testing
if a graph G is perfect requires to compute its chro-
matic number χ(G) and its clique number ω(G), two
NP-hard problems.

Table 1 illustrates the time complexity of this approach
for finding an FSC for the class of perfect graphs. For
N between 7 and 10, this table give the the number
of membership to C and subgraph isomorphism tests,
and the CPU time required to find an FSC of at most
N nodes, using a 2.2 GHz Intel dual core processor
with 2Gb of RAM.

N CPU (sec) C tests Subgraph iso.
7 0.1 1,302 43
8 0.8 14,899 1,754
9 19.9 289,567 52,044

10 1381.5 12,583,000 4,996,063

Table 1. Computational statistics for the class of perfect
graphs.

2.2. Experimental results

We use our algorithms to find results related to the
concepts of independence, domination and irredun-
dance of graphs.

An independent set S of a graph G is a set of pairwise
non-adjacent nodes of G. The independent domination
number of G, denoted i(G), is the minimum cardinal-
ity of a maximal independent set of G. Furthermore,
a dominating set T is a set of nodes such that each
node of V (G)\T is adjacent to at least one node of
T . The domination number of G, written γ(G), is the
minimum cardinality of a dominating set of G. More-
over, let X ⊆ V , a node x ∈ X is irredundant in X
if it is isolated in X or if it has a private neighbor,
i.e. a node y ∈ V \X such that x is the only node
of X adjacent to y. The set X is irredundant if all
its nodes are irredundant. We denote ir(G) the min-
imum cardinality of a maximal irredundant set of G.
It is well known in graph theory that the following re-
lations hold for all graphs G ∈ G (Haynes et al., 1998):
ir(G) ≤ γ(G) ≤ i(G).

Figure 1 illustrates the single graph SFSC algorithm
on the class of graphs G satisfying γ(G) = i(G). The
graph H1 found by our algorithm correspond to the
well-known SFSC originally presented in (Allan &
Laskar, 1978). Our methods also led to the discovery
of novel and significant results. For instance, Figure 2
describes a run of our multiple SFSC algorithm for the

class of graphs G such that ir(G) = γ(G), setting the
desired number of forbidden subgraphs to K=2. The
SFSC conjectured by the algorithm, i.e. H={M,H3},
is a novel result that strengthens a previous SFSC pro-
posed in (Favaron, 1986). Likewise, Figure 3 shows a
run of our single graph NFSC algorithm for the class
of graphs G that satisfy ir(G) < γ(G), where a novel
NFSC H={H3} was conjectured. Note that there re-
sults were discovered right-away by our methods, with-
out having to adjust any parameter. The proofs of
these results can be found in (Desrosiers et al., 2007).

(a) H0 (b) G0 (c) H1

Figure 1. Single graph SFSC for the class of graphs G sat-
isfying γ(G) = i(G).

(a) M (b) H0 (c) G0 (d) H1

(e) G1 (f) H2 (g) G2 (h) H3

Figure 2. Two graph SFSC for the class of graphs G satis-
fying ir(G) = γ(G).

(a) G0 (b) H1 (c) G1 (d) H2 (e) G2 (f) H3

Figure 3. Single graph NFSC for the class of graphs G sat-
isfying ir(G) < γ(G).

3. Conclusion

To summarize, we have introduced a novel problem of
describing a class of graphs using forbidden subgraphs.
This problem, which contrasts the typical characteri-
zations based on recurrent subgraphs, has several po-
tential uses in data analysis, including the discovery
of underlying constraints and the design of efficient
classification methods. Moreover, we have presented
several methods to find sufficient and necessary con-
ditions to characterize a class C, and have illustrated
the potential of these methods in the discovery of novel
and significant results in the field of graph theory.

Mining graphs to discover new theorems in mathematics

References

Allan, R., & Laskar, R. (1978). On domination and inde-
pendent domination numbers of a graph. Discrete Math-
ematics, 23, 73–76.

Caporossi, G., & Hansen, P. (2000). Variable neighborhood
for extremal graphs: 1-the system autographix. Discrete
Mathematics, 212, 29–44.

Chudnovsky, M., Robertson, N., Seymour, P., & Thomas,
R. (2006). The strong perfect graph theorem. Annals of
Mathematics, 164, 51–229.

Desrosiers, C., Galinier, P., Hansen, P., & Hertz, A. (2007).
Automated generation of conjectures on forbidden sub-
graph characterization (Technical Report G-2007-48).
Les Cahiers du GERAD.

Fajtlowicz, S. (1988). On conjectures of Graffiti. Discrete
Mathematics, 72, 113–118.

Faudree, R., Flandrin, E., & Ryjacek, Z. (1997). Claw-free
graphs – A survey. Discrete Mathematics, Journal of
graph theory, 169, 87–147.

Favaron, O. (1986). Stability, domination and irredun-
dance in a graph. Journal of Graph Theory, 10, 429–438.

Greenwell, D. L., Hemminger, R., & Klerlein, J. (1973).
Forbidden subgraphs. Proc. of the Fourth Southeastern
Conf. on Combinatorics, Graph Theory and Computing
(pp. 389–394). Congressus Numerantium.

Hansen, P., Aouchiche, M., Caporossi, G., Mélot, H., &
Stevanovic, D. (2005). What forms do interesting con-
jectures have in graph theory? Graphs and Discovery,
DIMACS Series in Discrete Mathematics and Theoreti-
cal Computer Science, 231–252.

Haynes, T. W., Hedetniemi, S., & Slater, P. (1998). Fun-
damentals of domination in graphs. Marcel Dekker.

Kramer, S., De Raedt, L., & Helma, C. (2001). Molecular
feature mining in hiv data. KDD ’01: Proc. of the 7th
ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (pp. 136–143). New York, NY, USA: ACM.

McKay, B. (1998). Isomorph-free exhaustive generation.
Journal of Algorithms, 26, 306–324.

Nijssen, S., & Kok, J. N. (2004). The gaston tool for fre-
quent subgraph mining. Proc. of the Int. Workshop on
Graph-Based Tools (Grabats 2004) (pp. 281–285). Rome,
Italy: Elsevier.

Robertson, N., Sanders, D., Seymour, P., & Thomas, R.
(1997). The four-colour theorem. Journal of Combina-
torial Theory, 70, 2–44.

Yan, X., & Han, J. (2002). gSpan: Graph-based substruc-
ture pattern mining. ICDM ’02: Proc. of the 2002 IEEE
Int. Conf. on Data Mining (ICDM’02) (pp. 721–724).
Washington, DC, USA: IEEE Computer Society.

