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Abstract

Analyzing and understanding the structure
of social networks and other real-world
graphs has become a major area of research
in the field of data mining. An impor-
tant problem setting is the creation of re-
alistic synthetic graphs that resemble real-
world social networks. While a range of
efficient algorithms for this task have been
proposed, current methods solely take the
network topology into account ignoring any
node labels. We propose a probabilistic ap-
proach to synthetic graph generation with
node labels, building on concepts from rela-
tional learning.

1. Generation of real-world graphs
Given a graph G, we would like to be able to perform
graph anonymization, that is to generate a graph G′ of
the same size (number of nodes) as G. The objective
in graph anonymization is that G′ shares topological
properties and exhibits similar node labels as the orig-
inal graph G.

Traditional models for generating graphs are based on
simple graph statistics. For example the Erdös-Renyi
model (Erdös & Renyi, 1960) only has the edge prob-
ability pe as a single parameter, that is learned from
data. Another prominent graph generation model is
preferential attachment (Barabasi & Albert, 1999), a
model that focuses on the degree of nodes and new
nodes prefer to attach to existing nodes with a high
degree. ForestFire (Leskovec et al., 2007) is a more
recent, stepwise graph generation procedure that fol-
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lows three main steps every time a new node v is
added to the graph: 1) v forms a link to an exist-
ing node w, 2) v randomly selects a subset Nsub(w) of
the neighbours of w, and 3) then repeats step 2) for
the nodes in Nsub(w). Another recent approach, Kron-
Fit (Leskovec & Faloutsos, 2007), is based on fitting an
N1×N1 probabilistic initiator matrix Θ to the original
graph and approximating it by iteratively computing
the Kronecker product of Θ with itself. However, as
in real-world graphs node labels usually correlate with
topology, it would be desirable to have models that
consider the generation of labeled graphs.

Our approach towards labeled graph generation builds
upon concepts from relational learning. A starting
point for our approach is the Infinite Relational Model
(IRM) (Kemp et al., 2006; Xu et al., 2006).

2. Infinite Relational Model
The underlying principle of this family of models is
to infer a block stochastic model of graph structure.
The goal is to partition relations in an observed net-
work by assigning nodes to clusters. Nodes that share
a similar connectivity structure and similar labels are
grouped together in the same clusters which leads to an
informative representation of the underlying network.
Employing a Dirichlet process prior on the cluster as-
signments, the IRM allows for an unbounded number
of clusters. The probability of a relation Ri,j between
two nodes i and j is entirely determined by their clus-
ter membership zi and zj .

P (Ri,j | zi, zj) = Bernoulli(Ri,j | η(zi, zj)), (1)

where Ri,j is the relation status between node i and
j, either exhibiting a link (true) or not (false). In a
traditional IRM, the prior probability of η(zi, zj) solely
depends on a global Beta prior that is shared among
all clusters

η(a, b) ∼ Beta(β1, β2), (2)
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where a and b represent two clusters and β1, β2 are hy-
perparameters of the Beta distribution (Beta), hence
influencing the a priori probability of relations be-
tween clusters.

We consider node labels as Nf independent binary fea-
tures attached to every node i, Fi = {Fi,1, . . . , Fi,Nf

}.
The features of node i are Bernoulli distributed

P (Fi | zi) =
Nf∏
f=1

Bernoulli (Fi,f | θf (zi)) , (3)

where similar to the relation probabilities, the feature
probabilities θf (zi) depends on the cluster assignment.
Again a beta prior is put on the feature probabilities

θf (zi) ∼ Beta(Θf
1 ,Θ

f
2 ), (4)

which is chosen to reflect the data statistics, i.e. how
many nodes in total have a specific feature set or not.

Cluster distributions and hyperparameters are learned
on a training graph. Subsequently random graphs with
labels can be generated from the trained model by for-
ward sampling from the network model. The block
structure of a network drawn from the IRM nicely re-
sembles community structures present in the original
graph. However, due to the fact that the between-
cluster edge probabilities η(a, b) are sampled mutually
independent for each pair of clusters a and b, artificial
graphs generated by the IRM do not capture other sta-
tistical patterns of connectivity present in real-world
graphs. For example, to realistically model the degree
distribution it is desirable to allow for clusters that ac-
count for a small number of nodes with high degrees
(hubs) and a larger number of nodes with low degrees.

3. Infinite Network Model
In order to better model global connectivity patterns
of real-world graphs, we propose the Infinite Network
Model (INM) that generalizes the IRM such that ev-
ery cluster carries an individual “connectivity prior”
in form of a Beta distribution. We assume that the
probability of a relation between any two clusters a
and b is given by a Beta prior taking pseudo counts
from both respective clusters into account

P (ηa,b) ∼ Beta(ηa,b |βa
1 + βb

1, β
a
2 + βb

2). (5)

To complete the definition of this extra level of hier-
archy, we put Gamma priors on the beta parameters

βa
1 ∼ Γ(k1, s1), βa

2 ∼ Γ(k2, s2), ∀ clusters a. (6)

As a result of this connectivity prior, the model not
only describes the interaction probability between two

clusters, but also whether members of a cluster are
more or less likely to form links to any other cluster in
the network. Hence the INM can describe clusters of
low or high connectivity corresponding to low or high
degrees.

4. Experiments
In our experiments, we generate synthetic graphs from
three real world graphs with binary labels. Coun-
tries (Wasserman & Faust, 1994) is a network in which
the 24 nodes correspond to countries and edges rep-
resent economic or diplomatic relationships between
countries. The node labels indicate whether a coun-
try belongs to the richer half of countries (1, high
GNP) or to the poorer half of countries (0, lower
GNP). Enron (Klimt & Yang, 2004) is an email traf-
fic network in which the 184 nodes are Enron em-
ployees and links connect employees that had email
correspondence. Node labels indicate whether an em-
ployee belongs to the management level of the com-
pany (1) or not (0). In Blogosphere (Adamic &
Glance, 2005) the 1490 nodes are political blogs and
edges represent hyperlinks between them. Node value
attributes indicate political leaning: left/liberal (0) or
right/conservative (1).

We trained the INM on a given graph G to learn its
parameter settings and then generate a new synthetic
graph G′ of size n. As a comparison we also performed
graph generation using the IRM, KronFit and Forest-
Fire. In order to simulate the generation of labeled
graphs we performed random shuffling of the original
node labels and randomly redistributed the labels on
the synthetic graphs. We measured the ability of the
methods to generate graphs that approximate the orig-
inal graph in terms of the following graph properties:

In-(out-)degree distribution: the distribution of
the number of incoming (outgoing) edges for all nodes
in the graph.
Hop plot: the distribution of shortest distances
(number of steps) between any two nodes in the graph.
Scree plot: the distribution of singular values of the
adjacency matrix of the graph.
Diameter of the graph and the effective diameter
of the graph: the maximum shortest distance between
any two nodes in the graph and the 90% quantile of
all shortest path distances, respectively.

Beside these purely topological criteria, we also com-
puted a property of the synthetic graph which reflects
its similarity to the original graph both in terms of
topology and node labels. This was achieved by us-
ing the graphlet kernel (Shervashidze et al., 2009) that
counts matching connected, induced subgraphs of 4
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nodes in two graphs. This graphlet kernel kg can be
turned into a distance via
dg(G,G′) =

√
kg(G,G) + kg(G′, G′)− 2kg(G,G′),

where G is the original graph and G′ is the synthetic
graph in our case.

Results We report results for all methods in Table 1.
Results are better, the smaller the entries in a ta-
ble, except for the diameter. The INM outperformed
KronFit in all cases except for in-degree distribution
on Countries and its out-degree distribution on Blogs.
The INM achieved better results than Forest Fire, ex-
cept for the effective diameter, the right singular value,
and the scree plot on Blogs. Also the IRM showed bet-
ter results than KronFit and ForestFire in most of the
tasks. Most interesting among our evaluation mea-
sures is the graphlet kernel, as it not only assesses the
topological similarity to the original graph, but also
the node label similarity. Here INM and IRM were also
better than KronFit and ForestFire, both with random
shuffling of original node labels, on all datasets. The
INM was closer to the original graph than the IRM
on Countries and ENRON, but worse on the Blogs
dataset. This is in fact consistent with the results for
the other topological features, where the INM is most
of the time best on Countries and ENRON, but often
worse than the IRM on Blogs. Looking at the Pear-
son’s correlation coefficient between node labels and
degrees on the three datasets (see Table 1) one can
see that unlike in the other datasets there is almost
no correlation in Blogs. As the INM is based on the
assumption that node labels, cluster membership and
degree of a node are all correlated it shows better re-
sults on Countries and ENRON where the assumption
holds, while it performs slightly worse on Blogosphere.

5. Discussion
We present a relational learning approach to synthetic
graph generation, given a reference graph. Unlike the
numerous other approaches to graph synthesis, our
method is designed to produce graphs with node la-
bels. The additional flexibility introduced by the INM
yields a consistent improvement over the IRM when
degrees and labels in the original graph exhibit correla-
tion. Synthetic graphs generated by the INM approxi-
mate both the topology and the labels of the reference
graph well, outperforming the state-of-the-art.
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in-degree Countries ENRON Blogs
INM 0.300 0.085 0.073
IRM 0.337 0.105 0.037

KronFit 0.292 0.175 0.333
ForestFire 0.750 0.331 0.176

out-degree Countries ENRON Blogs
INM 0.187 0.090 0.082
IRM 0.246 0.097 0.061

KronFit 0.375 0.134 0.042
ForestFire 0.583 0.428 0.382
hop plot Countries ENRON Blogs

INM 0.029 0.055 0.039
IRM 0.072 0.065 0.020

KronFit 0.054 0.242 0.235
ForestFire 0.453 0.059 0.658

scree plot Countries ENRON Blogs
INM 0.034 0.040 0.092
IRM 0.031 0.044 0.071

KronFit 0.088 0.071 0.099
ForestFire 0.086 0.107 0.053
diameter Countries ENRON Blogs

Original graph 2 4 8
INM 2 4 6
IRM 2 4 7

KronFit 2 3 6
ForestFire 4 4 12
dgraphlet Countries ENRON Blogs

INM 0.114 0.059 0.327
IRM 0.141 0.084 0.086

KronFit+RS 0.240 0.091 0.434
ForestFire+RS 0.239 0.181 0.432

Correlation Countries ENRON Blogs
(degree, labels) 0.46 0.43 0.01

Table 1. Distance to the original graph in terms of
Kolmogorov-Smirnoff statistic for in-(out-)degree, hop
plot, scree plot; Diameter (effective diameter) of the orig-
inal and the synthetic networks; distance induced by the
graphlet kernel (RS refers to random shuffling); correlation
between degree and node labels in the original network.


