Context-free graph grammars as a language-bias mechanism for
graph pattern mining

Christophe Costa Floréncio
Jan Ramon

CHRISTOPHE.COSTAFLORENCIOQCS.KULEUVEN.BE
JAN.RAMON@QCS.KULEUVEN.BE

Katholieke Universiteit Leuven, Dept. of Computer Science, Celestijnenlaan 200A, 3001 Leuven, Belgium

Jonny Daenen
Jan Van den Bussche
Dries Van Dyck

JONNY.DAENENQ@QSTUDENT.UHASSELT.BE
JAN.VANDENBUSSCHEQU HASSELT.BE
DRIES.VANDYCKQUHASSELT.BE

Hasselt University, Transnational University of Limburg, Agoralaan Building D, 3590 Diepenbeek, Belgium

1. Introduction

Many graph mining tasks involve search over lan-
guages of graphs. Generating all elements of a graph
language is a non-trivial task, and there are often ad-
ditional constraints, e.g. to allow for efficient prun-
ing. There are several approaches to generate graphs
(Kuramochi & Karypis, 2004; Kuramochi & Karypis,
2005; Gudes et al., 2006; Yan & Han, 2002; Ramon
& Nijssen, 2009) For some applications, however, it is
desirable to constrain the search and only consider a
subclass of all graphs. For this, the use of language
bias has been considered, e.g. in the field of inductive
logic programming (Nédellec et al., 1996).

In the context of graph mining, one would expect
of a similar general language bias mechanism that it
allows one to specify many different classes of graphs in
a declarative way. In the present paper, we propose the
use of context-free graph grammars for this purpose.
Graph grammars are well known (Rozenberg, 1997),
and a wide variety of classes of graphs can be specified
using graph grammars. This makes them suitable for
use as an expressive and flexible mechanism for graph
pattern language bias. Examples of context-free graph
languages include: all trees; all cycles; all outerplanar
graphs; all graphs of treewidth at most k.

A particularly elegant approach to graph gram-
mars has been developed by Bauderon and Courcelle
(1987). As has been pointed out before (Bodlaender,
1998), Courcelle’s writings might be somewhat inac-
cessible for readers with little algebraic background.
This paper has three purposes: (1) review Courcelle’s
graph grammars (more precisely: the HR-equation
systems) in a simple and, hopefully, accessible man-
ner, (2) define a canonical form for bounded treewidth
graphs based on Arnborg’s treewidth checking algo-
rithm (Arnborg et al., 1987) and (3) show how these

can be used as a tractable formalism for the generation
of graph patterns (Theorem 3).

2. Graph expressions

Basically we assume a finite set A of edge labels and
a sufficiently large universe U of nodes. By a graph in
this paper we mean a triple G = (V, E, S), where V
is a finite set of nodes, E is a subset of V x A x V,
and S C V. The elements of E are called the edges
of GG, and the nodes in S are called the sources of G.
For any graph G, we will use V(G), E(G), and S(G)
to refer to the node set, the edge set, and the set of
sources of G, respectively.!

A graph G is called plain if it has no sources,
ie., S(G) = 0. We are primarily interested in plain
graphs; the sources are an auxiliary feature that al-
lows us to represent graphs using graph expressions,
as introduced by Bauderon and Courcelle, and inde-
pendently by Corradini, Montanari, and Rossi (1994).
We use here a syntax suggested by Cardelli, Gardner
and Ghelli (2002).

The syntax of graph expressions e is defined by
the following grammar, in which lc is short for local.
(Here, a ranges over A and x and y range over U.)

e—a(x,y); e—ele; e—(lcx)e

The semantics of graph expressions will be defined
using the two graph operations merge and project:
Merge: For two graphs G; and Gy we say that Gy |
Gq is allowed if V(G1) NV (Gy) C S(G1) N S(Ga).
When allowed, a merge is defined as: Gy | G2 =

(V(G1) UV (Gs), E(G1) U E(G2),S(G1) U S(G2)).
Project: Let G be a graph and let © € S(G). Then
the projection is defined as

We consider only graphs without isolated nodes; these
are nodes that do not participate in any edge.

Graph grammars as language bias in graph mining

(Iex) G = (V(G), E(G), S(G) \ {z}).

Graph expressions will represent graphs up to iso-
morphism. So, as a final step towards the definition of
the semantics of graph expressions, we need to define
our notion of isomorphism formally.

To that end, let G and G’ be two graphs such
that S(G) = S(G') (graphs with different sets of
sources can never be isomorphic in our formalism).
Then an isomorphism from G to G’ is a bijection
7 : V(G) — V(G') that is the identity on S(G), and
such that the set {(7(u),a,7(v)) | (u,a,v) € E(G)}
equals E(G’). If such an isomorphism exists, we call
G and G’ isomorphic; we denote this by G’ = G. The
set {G' | G' =2 G} of all graphs isomorphic to some
graph G is called the isomorphism class of G or the
the abstract graph G.

We would like to apply merge and project also to
isomorphism classes of graphs. This is easy to define,
and we note the following lemma in this respect:

Lemma 1. For any graphs G1 and Gz, there exist
graphs G| =2 Gy and Gy = Gy such that G | GY is
allowed.

So, for abstract graphs G; and G, we can always
assume without loss of generality that the represen-
tatives G; and Go are chosen such that Gy | G is
allowed, so that we can indeed consider the abstract
graph G | Go. For the project operation there is no
problem, and given any abstract graph G, we can also
consider the abstract graph (lcz) G.

We are finally ready to define the semantics of
graph expressions. For every expression e, we define
an abstract graph ||e|| as follows:

'ha(x\’y)H - |<|{x|7|y‘}|i{(W,a,m},{x,y»;
l(ea)el = (cz)lel.

We note the following easy to prove property:

Proposition 1. Every graph can be defined by a graph
expression, i.e., for every abstract graph G there exists
a graph expression e such that |le|| = G.

Proof. Let G = (V,E,S). The desired expression e
consists of the merge of all expressions a(z,y) with
(z,a,y) € E, followed by all projections (lcz) where
x¢S. O

Note that the proof of the above proposition
“wastes” a lot of sources: as many sources are used as
there are nodes in the graph. A considerable strenght-
ening of the above proposition is the following theo-
rem, essentially due to Courcelle (1992). In order to
formulate the theorem, let us define the width of an
expression as the number of different sources occur-
ring in the expression, minus 1. We then define the

expression width of a graph G as the minimal width of
any expression defining G. We now have the following
theorem and immediate corollary:

Theorem 1. For any graph G = (V, E, S), the follow-

ing two statements are equivalent:

(1) The plain graph (V, E) underlying G has a tree
decomposition of width k, such that S is included
in at least one bag.?

(2) G can be defined by an expression of width k.

Corollary 1. A graph expression of width k for a
plain graph G can be transformed in linear time into a
tree decomposition of width k for G and vice versa.

The key insight for the above corollary is that the
bags of a tree decomposition of width & describe which
vertices must be sources at the same time to construct
all edges of the graph using only k+1 sources. In other
words, graph expressions and tree decompositions of
width k are essentially equivalent.

However, because graph expressions are strings,
they have a natural lexicographical ordering which can
be used to define a polynomial time computable canon-
ical form for graphs of treewidth at most k. The key
idea is to associate a lexicographical minimal graph ex-
pression with a given tree decomposition of width k by
considering all possible injective mappings ¢ from the
vertices of the graph to k£ + 1 sources such that ¢ is
bijective when restricted to a bag. A canonical graph
expression can then be obtained by taking the lexico-
graphically minimal expression over all tree decompo-
sitions of a particular form which can be enumerated
in polynomial time by adapting the well known algo-
rithm of Arnborg, Corneil and Proskurowski (1987).

Theorem 2. A canonical graph expression of width k
for a graph of treewidth at most k can be computed in
polynomial time.

3. Context-free graph grammars

In order to generate sets of graphs, one can use an
elegant version of context-free graph grammars due to
Bauderon and Courcelle, which we introduce here.

Recall that a standard context-free grammar, as
classically used to generate strings over some finite al-
phabet ¥, consists of a finite set N of nonterminal
symbols, together with a set of productions, each of
the form X — s, where X is a nonterminal and s is a
string over the alphabet ¥ U V. One of the nontermi-
nals is singled out as the start symbol.

The notion of context-free graph grammar now is
exactly the same, except that instead of strings as
right-hand sides of productions, we will use graph ex-

2The X;’s are called the bags of a tree decomposition
(T, (X¢)iev(t)) of G and Xy is called the bag of ¢.

Graph grammars as language bias in graph mining

pressions. To this end, we must extend our notion of
graph expression to allow for nonterminals to occur in
them. Let N be a finite set of nonterminals. Then the
syntax of graph expressions e over N is a simple exten-
sion of the syntax we already had, as follows. (Here,
X ranges over nonterminals in N.)
e—X; e—alx,y) e—ele e—(lcx)e

Graph expressions in which no nonterminals occur are
called terminal.

Given a context-free graph grammar, an expression
e over A/ can be rewritten in a single step in several
possible ways, depending on the productions that are
present in the grammar. More formally, for expres-
sions e and ¢’ over N, we say that e rewrites to ¢’ in
one step, denoted by e — €/, if

(1) There is a grammar production X — f;

(2) We have obtained €’ from e by replacing one

occurrence of X in e by f.

Note that if e is terminal, no rewritings are possible,
since no nonterminals occur in e. The transitive clo-
sure of the relation — is denoted by —*. So, e —* ¢
if e can be rewritten into ¢’ in several steps.

Now the graph language generated by the grammar
is the (typically infinite) set consisting of all terminal
expressions e such that A —* e, where A is the start
symbol of the grammar. So, the grammar generates
graph expressions rather than actual graphs, but we
can easily obtain these by taking the semantics of the
produced graph expressions. Indeed, having an ex-
pression for each generated graph is an advantage as
an expression provides us with the detailed structure
of the graph.

Let us now see an example. The following graph
grammar, with start symbol C, generates all simple
cycles by closing all simple paths from source = to
source y, generated by P, and projecting out the
sources:

C— (lex,y) (P | aly,x));

P (lc2)(Z|alzy); P - alz,y)

Z — (ley) (P al(y, 2)); 7Z — a(z, 2)
As a more advanced example, we consider a grammar
for undirected graphs by dropping the edge directions.
Starting from the start symbol G, it generates all

biconnected outerplanar graphs?:
G — (lex,y) (XY |a(y,z));
G — (ley,2) (ZY | a(y, 2));

XY — XY [a(y, z); XY — a(z,y);
XY — (le2) (XZ | a(z,p)); XY — (lc5) (a(,2) | ZY);
XZ — XZ | a(z,x); XZ — a(z,2);
XZ — (Iey) (XY |a(y,2); XZ— (ley) (ZY | a(y,2));
zZY — ZY | a(y, 2); ZY — a(z,y);
ZY — (lez) (a(z,2) | XY); ZY — (lcz) (a(y,z) | XZ)

30uterplanar graphs occur abundantly in graph
datasets representing molecular structures (such as NCI).

G — (lcx,2)(XZ | a(z,x));

4. Tractable pattern generation

A language bias on the possible graph patterns can
be nicely and declaratively specified in the form of a
graph grammar. Moreover, under reasonable assump-
tions* , patterns belonging to the language generated
by the grammar can be enumerated with polynomial
delay (proof ommitted due to space limitations).

Theorem 3. Let k, A be constants, G a graph gram-
mar generating graphs with treewidth at most k and
degree at most A and n an integer. Then, there is
an algorithm enumerating all elements of G that have
at most n nodes with polynomial delay, i.e. the time
needed to list each next element of G is bounded by a
polynomial in the size of G and n.

References

Arnborg, S., Corneil, D. G., & Proskurowski, A. (1987).
Complexity of finding an embedding in a k-tree. SIAM
J. Alg. Disc. Meth., 8, 277-284.

Bauderon, M., & Courcelle, B. (1987). Graph expressions
and graph rewritings. Math. Syst. Theory, 20, 83—127.

Bodlaender, H. L. (1998). A partial k-arboretum of graphs
with bounded treewidth. Theor. Compu. Sci., 209, 1-45.

Cardelli, L., Gardner, P., & Ghelli, G. (2002). A spa-
tial logic for querying graphs. ICALP (pp. 597-610).
Springer.

Corradini, A., Montanari, U., & Rossi, F. (1994).

An abstract machine for concurrent modular systems:
CHARM. Theor. Comput. Sci., 122, 165-200.

Courcelle, B. (1992). The monadic second-order logic of
graphs. III. Tree-decompositions, minors and complexity
issues. RAIRO Inform. Théor. Appl., 26, 257-286.

Gudes, E., Shimony, S. E., & Vanetik, N. (2006). Discover-
ing frequent graph patterns using disjoint paths. IEEE
Trans. Knowl. Data Eng., 18, 1441-1456.

Kuramochi, M., & Karypis, G. (2004). An efficient algo-
rithm for discovering frequent subgraphs. IEEE Trans.
Knowl. Data Eng., 16, 1038-1051.

Kuramochi, M., & Karypis, G. (2005). Finding frequent
patterns in a large sparse graph. Data Min. Knowl. Dis-
cov., 11, 243-271.

Nédellec, C., Adé, H., Bergadano, F., & Tausend, B.
(1996). Declarative bias in ILP. In L. De Raedt (Ed.),
Advances in inductive logic programming, vol. 32 of
Frontiers in Artificial Intelligence and Applications, 82—
103. IOS Press.

Ramon, J., & Nijssen, S. (2009). Polynomial-delay enumer-
ation of monotonic graph classes. JMLR. To appear.
Rozenberg, G. (1997). Handbook of graph grammars and
computing by graph transformation, volumes 1-3. World
Scientific Pub Co Inc.

Yan, X., & Han, J. (2002). gSpan: Graph-based substruc-
ture pattern mining. ICDM (pp. 721-724). IEEE Com-
puter Society.

4E.g., molecular structures inherently have bounded de-
gree and almost all have treewidth at most 3 (NCI: 98%).

