
Classification on Graphs for Dynamic Difficulty Adjustment:
More Questions Than Answers

Olana Missura OLANA.MISSURA@IAIS.FRAUNHOFER.DE
Thomas Gärtner THOMAS.GAERTNER@IAIS.FRAUNHOFER.DE

Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS
Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

Abstract
Motivated by a problem of dynamic difficulty ad-
justment in computer games, we propose a new
learning setting. We argue that video games re-
quire a mechanism for dynamic difficulty adjust-
ment. Such mechanism can be formulated as a
classification problem on a graph that combines
the properties of online and active learning. The
main contribution of this paper is the clarifica-
tion of this novel learning setting and a summary
of open questions.

1. Introduction
A game and its player are two interacting entities. A typ-
ical player plays to have fun, while a typical game wants
its players to have fun.What constitutes the fun when play-
ing a game? One theory is that our brains are physiologi-
cally driven by a desire to learn something new: new skills,
new patterns, new ideas (Biederman & Vessel, 2006). We
have an instinct to play because during our evolution as
a species playing generally provided a safe way of learn-
ing new things that were potentially beneficial for our life.
Daniel Cook (Cook, 2007) created a psychological model
of a player as an entity that is driven to learn new skills that
are high in perceived value. This drive works because we
are rewarded for each new mastered skill or gained knowl-
edge: The moment of mastery provides us with the feeling
of joy. The games create additional rewards for their play-
ers such as new items available, new areas to explore. At
the same time there are new challenges to overcome, new
goals to achieve, and new skills to learn, which creates a
loop of learning-mastery-reward and keeps the player in-
volved and engaged.

Thus, an important ingredient of the games that are fun

Presented at ILP-MLG-SRL, Leuven, Belgium, 2009.

to play is providing the players with the challenges corre-
sponding to their skills. It appears that an inherent property
of any challenge (and of the learning required to master it)
is its difficulty level. Here the difficulty is a subjective fac-
tor that stems from the interaction between the player and
the challenge. The perceived difficulty is also not a static
property: It changes with the time that the player spends
learning a skill.

The dependency between the perceived difficulty and
player’s skills is bidirectional: The ability to learn the skill
and the speed of the learning process are also controlled by
how difficult the player perceives the task. If the bar is set
too high and the task appears too difficult, the player will
end up frustrated and will give up on the process in favour
of something more rewarding. Then again if the challenge
turns out to be too easy (meaning that the player already
possesses the skill necessary to deal with it) then there is
no learning involved, which makes the game appear bor-
ing.

It becomes obvious that the game should provide the chal-
lenges for the player of the “right” difficulty level: The one
that stimulates the learning without pushing the players too
far or not enough. Ideally then, the difficulty of any partic-
ular instance of the game should be determined by who is
playing it at this moment. In other words, the game should
possess an ability to change the difficulty of its challenges
on the fly, in an online fashion.

2. General Setting and Related Work
In the games existing today we can see two general ap-
proaches to the question of difficulty adjustment. The tra-
ditional way is to provide a player with a way to set up the
difficulty level for herself. Unfortunately, this method is
rarely satisfactory. For game developers it is not an easy
task to map a complex gameworld into a single parame-
ter. When constructed, such a mapping requires additional
extensive testing, creating time and money costs. Addition-
ally, in general games require several different skills to play



Classification on Graphs for Dynamic Difficulty Adjustment

them. The necessity of going back and forth between the
gameplay and the settings when the tasks become too diffi-
cult or too easy disrupts the flow component of the game.

An alternative way is to implement a mechanism for dy-
namic difficult adjustment (DDA). There exist a few games
with a well designed DDA mechanism (Capcom’s Resi-
dent Evil 4 being probably most known example), but all of
them employ heuristics and as such suffer from the typical
disadvantages of heuristics (being not transferable easily
to other games, requiring extensive testing, etc). What we
would like to have instead of heuristics is a universal mech-
anism for DDA: An online algorithm that takes as an input
(game-specific) ways to modify difficulty and the current
player’s in-game history (actions, performance, reactions,
. . . ) and produces as an output an appropriate difficulty
modification.

Both artificial intelligence researchers and the game de-
velopers community display an interest in the problem of
automatic difficulty scaling. Different approaches can be
seen in the work of R. Hunicke and V. Chapman (Hunicke
& Chapman, 2004), R. Herbich and T. Graepel (Herbrich
et al., 2006), Danzi et al (Danzi et al., 2003), and others. As
can be seen from these examples the problem of dynamic
difficulty adjustment in video games was attacked from dif-
ferent angles, but a unifying approach is still missing.

Let us reiterate that as the perceived difficulty and the pre-
ferred difficulty are subjective parameters, the DDA algo-
rithm should be able to choose the “right” difficulty level
in a comparatively short time for any particular player.
Since both these parameters change with time, the algo-
rithm should keep adjusting the difficulty in the right man-
ner as the player progresses through the game. Note also
that in the general case the ways to modify difficulty don’t
have to be labelled (as in “this action increases the diffi-
culty” and “this one decreases it”), since even that can de-
pend on the player and her current state: For someone with
a grenade launcher a turret presents a different level of chal-
lenge than for someone armed with a crowbar only.

In the following sections we present a formalisation of the
DDA problem and list the directions for the future work.

3. Formalisation
Let us formalise the problem in the following way. In-
stead of a property representing a difficulty level, we as-
sume the game has a set of features, all of which can in-
fluence the perceived difficulty of a particular player. Each
game state v is a point in the game’s feature space. As de-
scribed above, the perceived difficulty is a subjective value
that directly depends on the game’s player at this specific
moment. Therefore, we say that we are given in some way
a player instance pt at time t.

The player instance pt defines a partial order on the set of
game states V , �pt , such that v1 �pt v2 if and only if the
player p at time t perceives the state v1 as more or equally
difficult as the state v2. Furthermore, the player instance pt

defines a labelling on V , ypt
: V → {+1, 0,−1}, where

the label depends on the player’s perceived difficulty of the
state v:

ypt
(v) =

 +1 too difficult,
0 engaging,
−1 too easy.

Note that the labelling ypt
is monotone with regard to the

partial order �pt
, that is ypt

(v1) ≥ ypt
(v2) if and only if

v1 �pt
v2.

Figure 1. An example of the graph Gpt and the labelling ypt on it
induced by the player instance pt (too difficult states are coloured
red, engaging ones green, and too easy ones yellow). From the
graph and the labelling we can see that this player considers the
game states v1 too difficult,that she perceives the game state v4 as
being easier than v3, etc.

One instance of a game consists of a subset of the game
states that the player and the game traverse together. Note,
that due to the structure of any particular game there exist
constraints regarding the allowed states transitions. To for-
malise these constraints we introduce two sets of edges on
V : E and F . The edges in E represent the possible transi-
tions of the player, while the edges in F are the transitions
allowed for the game itself. For example, in a computer
role-playing game (CRPG) among the edges in E are the
player’s movements or his decisions on which weapon to
use, while among the edges in F are the game’s decisions
on how many monsters to place in the player’s vicinity.

To summarise, we define a game graph Gpt as a five-tuple
(V,�pt

, E, F, ypt
). A game instance is a trajectory on Gpt

,
T = (u1, v1, u2, v2, . . . , ut, vt, . . .), where (ui, vi) ∈ F
and (vi, ui+1) ∈ E. That is, we assume an iterative na-
ture of the game instance: After each player’s transition
the game has an opportunity to modify something, and vice
versa. To account for the possibility of nothing happening
any of the edges in T can be self-loops. The task of keep-
ing the player engaged by providing her with adequately
difficult challenges turns into (1) the question of finding
the subset of vertices V0 = {v ∈ V |ypt

(v) = 0} and (2)
the question of how to place a player in a challenging state.
In other words, we face the tradeoff between exploration
(for 1) and exploitation (for 2). The goal of the learning
algorithm is to find V0 while minimising

∑
vi∈T |ypt

(vi)|.

On the one hand, we face an online learning problem be-



Classification on Graphs for Dynamic Difficulty Adjustment

cause while playing the game the player is moving along a
sequence of game states, effectively choosing the learning
instances. Plus, we want to minimize the amount of mis-
takes that the algorithm makes while predicting the labels.
On the other hand, since the game has the power to change
the game states to find the best suitable ones for a given
player, it should utilise this power to accelerate the learn-
ing algorithm by choosing the game states that will provide
the most information to the algorithm, which puts us into
an active learning scenario.

4. Research Directions
Several questions need to be taken into consideration re-
garding the formalisation of the DDA task described above.

Partial Order. Recall that the graph Gpt is defined by the
partial order �pt

induced by a particular player p at the
time t. Unfortunately, this partial order is not given to us
and the graph is not known. We suggest that a combination
of domain knowledge and user experiments can be used
to overcome this problem. Facts from the domain knowl-
edge can be utilised to create the edges in Gpt

that are valid
universally, for all players. User experiments allow for col-
lecting explicit feedback regarding �pt

. Clustering the re-
sulting partial orders can lead us to the types of the players.
When encountering a new player, it would be enough to
estimate which cluster she belongs to to get access to her
particular �pt

.

True Labels. It is important to note that in contrast to the
standard online or active learning setting, neither the player
nor the game provide the learning algorithm with the true
labels of the game states ypt

(v). Therefore, a mechanism
needs to be developed to infer a true label from the avail-
able observations.

Concept drift. Due to the nature of the DDA task, the
player’s concept ypt changes with time. Luckily for us it
does not change arbitrarily. Rather, we can safely assume
that, while playing the game, the player’s skill with it in-
creases, and the game states that appeared too difficult for
her turn into engaging ones, while the once engaging states
move into the ‘too easy’ class. In other words if we de-
note by pt′ the instance of the player p at the time t′, where
t′ > t, then for any game state v ypt′ (v) ≤ ypt(v). The
learning algorithm should be able to deal with this drift.
In other words, it is not enough to classify the states once
and for all, but it is necessary to query the already classi-
fied states now and again. The question is, which states in
particular and how often?

Objective function. The objective function described above
can potentially lead to the infinite costs. Consider Figure 2:
The player starts in the state v0 and the learning algorithm
wants to move her to the state v2. After the first transition

the player finds herself in the state v1 and moves back to v0.
Now every time the algorithm moves her to v1, she goes
straight back to v0, producing infinite costs. One possibil-

Figure 2. A set up for potentially infinite costs.

ity to work around this problem is to make some assump-
tions for the player’s behaviour that prevent the situation
described above. For example, we can safely assume that
the player is ‘curious’ meaning that she prefers to see and
experience new game states rather than come back to the
same old ones.

The main question is of course how to design a learning
algorithm able to solve the DDA problem and what perfor-
mance guarantees can such an algorithm have. To this end
we propose an approach along the lines of the algorithm de-
scribed in (Gärtner & Garriga, 2007). In essence, we sug-
gest to perform a binary search on a path in the minimum
path cover, until we find a game state that is satisfactory. In
this way we can provide the guarantees on the number of
queries the algorithm needs to perform to find an engaging
state in a simplified setting. To address the DDA problem
in its general setting we will investigate the questions listed
above in our future work.

Acknowledgments
We would like to thank the anonymous reviewers for their
helpful and insightful comments.

References
Biederman, I., & Vessel, E. (2006). Perceptual pleasure and the

brain. American Scientist, 94.

Cook, D. (2007). The chemistry of game design. World Wide
Web electronic publication.

Danzi, G., Santana, A. H. P., Furtado, A. W. B., Gouveia, A. R.,
Leitão, A., & Ramalho, G. L. (2003). Online adaptation of
computer games agents: A reinforcement learning approach.
II Workshop de Jogos e Entretenimento Digital, 105–112.

Gärtner, T., & Garriga, G. C. (2007). The cost of learning directed
cuts. Proceedings of the 5th International Workshop on Mining
and Learning with Graphs.

Herbrich, R., Minka, T., & Graepel, T. (2006). Trueskilltm: A
bayesian skill rating system. NIPS (pp. 569–576).

Hunicke, R., & Chapman, V. (2004). AI for dynamic difficulty
adjustment in games. Proceedings of the Challenges in Game
AI Workshop, Nineteenth National Conference on Artificial In-
telligence.


