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Abstract

In this paper, we analyze an algorithm
to compute a low-rank approximation of
the similarity matrix between nodes of two
graphs introduced by Blondel et al. in (Blon-
del et al., 2004). This problem can be re-
formulated as an optimization problem of a
continuous function Φ(S) = tr

(

ST M2(S)
)

where S is constrained to have unit Frobe-
nius norm, and M2 is a non-negative lin-
ear map. We restrict the feasible set to the
smooth manifold of rank k matrices with unit
Frobenius norm and k identical singular val-
ues. We analyze the convergence properties
of our algorithm and prove that accumulation
points are stationary points of Φ(S). We fi-
nally compare our method in terms of speed
and accuracy to the full rank algorithm pro-
posed in (Blondel et al., 2004). 1

1. From Similarity to Optimization

Graphs are a powerful tool for many practical prob-
lems such as pattern recognition, shape analysis, im-
age processing and data mining. Measures of graph
similarity have a broad array of applications, includ-
ing comparing chemical structures, navigating com-
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plex networks like the World Wide Web, and analyzing
different kinds of biological data (Zager, 2005).

The (i, j) entry of a similarity matrix expresses how
node i from a graph GA looks like node j from a
graph GB according to some similarity criterion. Sim-
ilarity matrices can, for instance, be used to extract
synonyms out of a dictionary.

Blondel et al. introduced the notion of similarity be-
tween nodes of two graphs in (Blondel et al., 2004).
They proposed to use the following iteration

S+ = M(S) := ASBT + AT SB, (1)

where A and B are the adjacency matrices respectively
associated to graph GA and GB and defined a similar-
ity measure as a fixed point of the normalized iterates.
One can see that after one iteration the (i, j) entry of
S+ is given by

∑

k,l

AikSklBjl + AkiSklBlj =
∑

k←i
l←j

Skl +
∑

k→i
l→j

Skl.

The first term of the right-hand side sums all (k, l)
entries of S such that node k is a child of node i in
GA and node l is a child of node j in GB . Hence the
more the children of node i and j are similar, the more
(S+)ij increases. Similarly, the analysis of the second
term of the right-hand side yields that the more the
parents of node i and j are similar, the more (S+)ij

increases.

Let vec(S) denote the vector containing the successive
columns of the matrix S. One can show that

vec(S+) = Mvec(S) :=
(

B ⊗ A + BT ⊗ AT
)

vec(S)
(2)

where ⊗ is the Kronecker product. This iteration is
in fact the power method applied to the matrix M .
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This matrix is non-negative and hence, according to
the Perron-Frobenius theorem, there exists a real pos-
itive eigenvalue ρ called the Perron root such that any
other eigenvalue λ satisfies λ ≤ ρ. Since M is symmet-
ric, its eigenvalues are real and can hence only have two
extremal eigenvalues, ρ and possibly −ρ, and the even
iterates of the following recurrence

S0 = 1m,n , Sk+1 = M(Sk)/ ‖M(Sk)‖ , (3)

converge to a unique positive solution. Indeed, M2 has
a unique dominant eigenvalue ρ2 and the iterates con-
verge towards the normalized orthogonal projection of
S0 onto the eigenspace associated to ρ2. This solution
achieves the extremal value of the eigenvalue equation
ρ2S = M2(S).

Eigenvalue problems can be seen as optimization prob-
lems whose stationary points are solution of the eigen-
value problem. Indeed, the stationary points of the
following optimization problem

max
〈S,S〉=1

〈

S,M2(S)
〉

(4)

are such that the gradient of its Lagrangian vanishes

grad S L(S, λ) ≡ M2(S) − λS = 0 , (5)

which is precisely our eigenvalue problem with λ = ρ2.

When S is large, the eigenvalue problem becomes rela-
tively expensive in terms of computational cost. Hence
one can think to modify the problem in order to find
an approximation of S at lower cost. In this paper,
we consider considers the approximation of the simi-

larity matrix S by a matrix of the form UV T

‖UV T ‖ where

UT U = Ik = V T V . This is a rank k matrix with k
identical singular values. The norm of UV T is equal
to k, but the analysis we further carry out is equiv-
alent up to a scalar multiplication, hence we will for
readability consider matrices of the form UV T in our
analysis.

2. The Problem and its Geometry

Let us first clearly state the optimization problem

Let A ∈ R
m×m, B ∈ R

n×n. Find the maximizer of

Φ : S → R : S 7→ Φ(S) = tr
(

ST M2(S)
)

,

with M(S) = ASBT + AT SB, and

S =
{

UV T ∈ R
n×m : UT U = Ik = V T V

}

.

This is an optimization problem of a continuous
function Φ on a compact domain. Notice that the

constraint set constitutes a smooth manifold S =
{

UV T ∈ R
n×m : (U, V ) ∈ St (k, m) × St (k, n)

}

where

St (k, m) =
{

U ∈ R
m×k : UT U = Ik

}

denotes the compact Stiefel manifold (see (Cason
et al., 2008) for details).

There always exists a solution S optimizing the func-
tion Φ such that the first-order optimality condition,
gradΦ(S) = 0, is satisfied

M2(UV T ) − U Sym
(

UTM2(UV T )V
)

V T

−(Im − UUT )M2(UV T ) (In − V V T ) = 0
(6)

where Sym(·) : X 7→
(

X + XT
)

/2.

The points satisfying equation (6) are called stationary
points. Equation (6) is equivalent to say that station-
ary points are such that

M2(UV T ) = UHV T + U⊥KV T
⊥ , (7)

where H ∈ SSym(k), the set of symmetric matrices
of order k, and where U⊥ and V⊥ are any orthogonal
complement of respectively U and V .

3. Algorithm and Convergence Analysis

We propose the following algorithm to find stationary
points of Φ

S+ = U+V T
+ := arg max

S̃=Ũ Ṽ T

ŨT Ũ=Ik

Ṽ T Ṽ =Ik

〈

S̃,M2(S)
〉

(8)

One iteration of (8) costs

6 (m2 + n2) k + 17 (m + n) k2 + O(k3)

whereas one full rank iteration costs 4(m2n + n2m).

Let M2(S) have an ordered singular value decompo-
sition

M2(S) =
[

P1 P2

]

[

Σ1 0
0 Σ2

] [

QT
1

QT
2

]

= PΣQT (9)

with P1 ∈ R
m×k, P2 ∈ R

m×(m−k), Q1 ∈ R
n×k, Q2 ∈

R
n×(n−k), Σ1 ∈ R

k×k and Σ2 ∈ R
(m−k)×(n−k). We

prove that the maximum is achieved when S = P1Q
T
1

and moreover, if ν := σmin(Σ1) − σmax(Σ2) > 0, then
this solution is unique.

If ν = 0, the iteration (8) is not well defined. From
now on, we only consider ν > 0. This assumption
seems realistic since the case ν = 0 has never been
observed in our numerical experimentations. Further
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analysis will have to be done in order to take care of
this special case.

Fixed points of the iteration are such that the cor-
responding ordered singular value decomposition of
M2(UV T ) is

M2(UV T ) = UQΣ1Q
T V T + U⊥Σ2V

T
⊥ (10)

with Q a square orthogonal matrix. This expression
satisfies equation (6) and fixed points are hence a sta-
tionary point.

We prove that the iteration is an ascent iteration for
Φ, and more precisely

Φ(S+) − Φ(S) ≥ ‖M(∆S)‖
2
+ ν ‖∆S‖

2
(11)

with ∆S := S+ − S, and ν := σmin(Σ1) − σmax(Σ2).

Moreover, if S is a non-stationary point of Φ, then
there exists an ǫ > 0 such that all Sǫ in the open ball
Bǫ(S) are not stationary points and since Φ(S+)−Φ(S)
is a continuous function of S, equation (11) guarantees
a non-zero increase of the iteration within that ball.
Eventually, a careful analysis allows to conclude that
every accumulation point of the sequence of iterates
is a stationary point of Φ. We experimentally observe
that accumulation points are local maxima of Φ.

4. Numerical Experiments

We observe that when the rank of the approximation
increases, the relative error of the approximation in-
creases and the rate of convergence of the algorithm
decreases. These counterintuitive results occur be-
cause similarity matrices do not usually have identi-
cal eigenvalues. We hence enhance our method with a
diagonal positive scaling D, i.e.

S+ = U+D+V T
+ := arg max

S̃=ŨD̃Ṽ T, D̃≥0

ŨT Ũ=Ik=Ṽ T Ṽ

〈

S̃,M2(S)
〉

.

The problems are structurally different: whereas the
set S is a nice compact submanifold, the feasible set
on which we run the experiments, is only a stratified
space. We are working on the proof of convergence
of this algorithm. The results found in the previous
section should be extendable to this modified case.

We look at the performance of this algorithm to com-
pute self-similarity matrices. This means that A and
B are equal, and the self-similarity matrix expresses
how a node of a graph is similar to other nodes of
the same graph. We run several experiments to com-
pute rank-k approximations of self-similarity matrices
on random graphs. Figure 1 shows the average compu-
tational time. As expected, we clearly notice that the
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Figure 1. This figure shows the average time to compute
rank-k approximations of the self-similarity matrix of a
connected random graph versus m, the order of this graph.
The graph is built such that the average number of out-
going edges of a node is 10. The algorithm stops when
‖∆S‖ ≤ 10−6 ‖S‖. The full rank results are obtained using
equation (3) which was analyzed in (Blondel et al., 2004).

smaller the rank of the approximation k, the smaller
the computational time. We further notice that, when
the order of the graph increases, the algorithm for low-
rank approximation converges faster than the full rank
algorithm.

As far as the relative error is concerned, we observe
that it does not vary much with the order of the graph.
As expected the relative error decreases when the rank
of the approximation increases. For m = 1000, we have

k 1 2 3 4 10
Error 4.5e − 2 3e − 3 2e − 3 2e − 4 1e − 5

These results might be biased since we consider ran-
domly generated graphs. Experiments on real graphs
are under investigation.
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