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Abstract

This paper is intended as a step towards
a theoretically sound approach to learning
from graphs, by applying ideas from the field
of grammar induction. We present results
concerning the learning of hypergraph gram-
mars. We consider identification in the limit
from both derivation trees and graphs.

We show that, by restricting the complexity
of grammars, a learnable class of derivation
languages is obtained. By exploiting a known
invariance result this class is extended to a
class that is learnable from hypergraphs.

1. Introduction

This paper presents a way of applying ideas from gram-
matical inference to learning graph languages. We
show that, by imposing bounds on the number of oc-
currences of terminals in graph grammars, a class of
derivation languages is obtained that has finite elas-
ticity, which implies identifiability in the limit. We
then use an existing invariance result for finite elas-
ticity to prove that an extended class, as well as the
corresponding class of hypergraph languages is learn-
able.

1.1. Graph Grammars

The study of graph grammars goes back to the late
sixties. It was motivated by the desire to extend the
theory of formal languages from strings and trees to
graphs, as well as by the potential of applications in
pattern recognition. Nowadays, graph grammars are
used in numerous fields such as chemical compound
analysis, CAD, and computational linguistics.

In (Costa Florêncio, 2008), the learnability of Node
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Label Controlled (NLC) graph grammars was studied.
It was shown that a learnable class is obtained if a
bound on the number of occurrences of each label is
imposed on Boundary NLC graph grammars.

In some sense, this paper generalizes this work, by con-
sidering hypergraphs instead of graphs. However, in
an important sense it is incomparable, since it is based
on hyperedge replacement instead of node replacement.
This essential difference yields entirely different learn-
able classes. No other previous work comparable to the
present paper seems to exist. Kukluk et al., 2008 pro-
poses a learning algorithm for edge-replacement gram-
mars. However, the algorithm is heuristic and learn-
ability issues are not addressed.

Jeltsch & Kreowski, 1991 give an algorithm that gen-
erates the set of HR grammars consistent with a given
set of hypergraphs. This kind of approach is an in-
teresting step towards a learning algorithm. However,
without combining it with a selection strategy, and
proving convergence for the resulting algorithm, this
cannot be regarded as a learning algorithm in itself.

2. HR Grammars and HR Languages

Given the space constraints, we will proceed in a some-
what informal manner. For the formal definitions the
reader is referred to (Habel, 1992).

A hyperedge is a generalization of an edge with or-
dered collections of incoming- and outgoing tentacles.
These are attached to nodes in a manner specified by
a source- and target function, respectively. A set of
nodes together with a set of hyperedges such that each
tentacle is connected to a node forms a hypergraph.

In HR grammars, during derivation, non-terminal la-
beled hyperedges are replaced by hypergraphs. Since
hypergraphs lack information about how they are
to be attached to source- and target nodes, objects
are needed that are annotated with this information.
These are called multi-pointed hypergraphs. In the re-
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mainder, we will just call these hypergraphs when this
does not lead to confusion. A set of multi-pointed hy-
pergraphs is called a hypergraph language over C if it
is closed under isomorphism. Hypergraphs that repre-
sent strings are called string graphs.

2.1. Derivations

Habel, 1992 defines derivation trees in terms of par-
allel derivations. This is not suited for our purposes
because the trees contain production rules from the
generating grammar as edge-labelings. In the context
of learnability, such a notion of derivation is unrealis-
tic. We therefore use our own notion, that rids deriva-
tion languages of the rules and non-terminals as they
appear in the generating grammar. Informally, the
nodes of a derivation tree represent the application of
rules from a grammar, and are labeled with copies of
the righthand-sides(rhses) of these rules. The labels
of the leaves contain just terminal hyperedges. We
assume an order over the non-terminal hyperedges in
every label. This can be any lexicographical order.

Derivations trees can be decomposed, such decompo-
sitions are crucial to our proof of learnability. Intu-
itively, they ‘break down’ derivation trees into the pro-
ductions they are defined over. The decomposition of
a leaf is simply a singleton containing a tuple of the
hyperedge it replaces and its label, the decomposition
of an internal node is a similar singleton union the
decomposition of its daughters.

3. Learnability

We will apply the notion of learnability known as iden-
tification in the limit (Gold, 1967). A class of lan-
guages is considered learnable just if a computable
function over sequences of input data exists that con-
verges on a correct hypothesis after a finite number of
presentations. It is assumed that all data is presented
eventually.

3.1. Finite elasticity

Learnability is largely determined by topological prop-
erties of the class under consideration. One such prop-
erty is the existence of an infinite ascending chain of
languages. This means that there exists an infinite se-
quence 〈Ln〉n∈N of languages in that class such that
L0 ⊂ L1 . . . . Having an infinite ascending chain is a
necessary condition for having a limit point:

Definition 1. Existence of a limit point

A class L of languages is said to have a limit point if
and only if it has an infinite ascending chain 〈Ln〉n∈N

and there exists another language L ∈ L such that

L =
⋃

n∈N
Ln. The language L is called a limit point

of L.

Having a limit point is a sufficient condition for not
being identifiable in the limit, not even non-effectively.

Having an infinite ascending chain implies the weaker
property known as finite elasticity:

Definition 2. (Wright, 1989; Motoki et al., 1991)
A class L has infinite elasticity if there exists an in-
finite sequence 〈sn〉n∈N of sentences and an infinite
sequence 〈Ln〉n∈N of languages in L such that for all
n ∈ N, sn 6∈ Ln, and {s0, . . . , sn} ⊆ Ln+1.

A class L has finite elasticity if it does not have infinite
elasticity.

It has been shown that finite elasticity is a sufficient
condition for learnability under two conditions:

Theorem 1. (Wright, 1989) Let G be a class of gram-
mars for a class of recursive languages, where G ∈ G
is at least semi-decidable. If L(G) has finite elasticity,
then G is identifiable in the limit.

One way of proving learnability of a class is demon-
strating it has finite elasticity, which also provides a
simple way of extending the class by exploiting a clo-
sure property. Given two alphabets Σ and Υ, a relation
R ⊆ Σ∗ × Υ∗ is said to be finite-valued iff for every
s ∈ Σ∗, there are at most finitely many u ∈ Υ∗ such
that Rsu. If M is a language over Υ, define a language
R−1[M ] over Σ by R−1[M ] = {s | ∃u(Rsu ∧ u ∈ M)}.

Theorem 2. (Kanazawa, 1994) Let M be a class
of languages over Υ that has finite elasticity, and
let R ⊆ Σ∗ × Υ∗ be a finite-valued relation. Then
L = {R−1[M ] | M ∈ M} also has finite elasticity.

This theorem is very useful for dealing with formalisms
for which a clear and precise notion of derivation is
defined: generally the relation between language ele-
ment and possible derivation is finite-valued, and it is
generally easier to prove finite elasticity of a class of
derivation languages.

4. Learnable classes

The class of hyperedge-replacement grammars GHR is
obviously not identifiable in the limit, from sentential
forms nor from derivations. It is easy to construct a
chain of grammars G1, . . . such that each Gi in this
chain generates exactly all string graphs of lengths 1
to i, thus the corresponding languages form an infinite
ascending chain. Constructing a grammar that gen-
erates such string graphs without any bound on their
length is trivial, and the language it generates is thus
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a limit point for the class. Since we are interested
in learnable subclasses of GHR, restrictions have to be
imposed on the grammars. Let k be an upper bound
on the total number of occurrences of any given edge
label from T in the rhses, and let Gk-HR be the class of
GHR grammars that have k as such a bound. If we re-
strict the class so that rules have at least one terminal
hyperedge in the rhs,a bound on the number of rules is
implied (recall that T is finite). A bound on the num-
ber of rules implies a bound on the number of distinct
non-terminal hyperedge labels in the grammar, since
these occur at least once in the lhs and at least once
in the rhs of rules of grammars in the class.

Assume that some class G that is a subclass of
DL(Gk-HR), for some fixed k, has infinite elasticity
with infinite sequences of trees T = t1, . . . and deriva-
tion languages D = D1, . . ., with corresponding gram-
mars G1, . . .. We define the sequence of sets of smallest
grammars consistent with T G1, . . ., such that Gi+1 =
∪{G|G = σ[decomp(t1)∪. . . decomp(ti)]∧G ∈ Gk-HR},
with σ an mgu. ‘Smallest’ is defined in terms of the
number of productions of a grammar.

Lemma 1. For every Gi there is a grammar G′ ∈ Gi

such that ∃σ.σ[G′] ⊆ Gi, thus for any tree t 6∈ DL(Gi),
t 6∈ DL(G′). Given that ∃G′ ∈ Gi+1.ti ∈ DL(G′),
and assuming that ti does not introduce new terminal
labels, it follows that ∀G′′ ∈ Gi+1, ∃σ, G′ ∈ Gi.σ[G′] =
G′′, with σ non-trivial.

In other words, for such a tree, all grammars in Gi+1

can be derived from Gi by applying substitutions.
Note that any Gi is a set of finite cardinality.

Proposition 1. For k = 1, DL(Gk-HR) has finite elas-
ticity.

Proof. (Sketch) Assume that this class has infinite
elasticity. Then Gi+1 must include just one rule for
each such hypergraph Ht corresponding to a node in
ti, and by the definition of finite elasticity, the same is
true for each Gj , j ≥ i + 1.

Given Lemma 1, for any tree ti in T , all grammars in
Gi+1 can be derived from grammars from the previous
timestep by applying substitutions. Only a finite num-
ber of such substitutions exist, so from this it follows
that the subsequence of trees ti, . . . ti+j , where none of
the trees introduce new terminals, is of finite length.

Assume that ti does introduce new terminals. There
are only finitely many such trees in the sequence, and
since the sequences inbetween them are finite, after
some point p, all grammars in the sequence Gp, . . .

can be obtained from a grammar G′ ∈ Gp by applying
a substitution. Just a finite number of such substitu-

tions exist for each G′, so after p only a finite number
of different grammars occur. Each of these grammars
can only occur a finite number of times in the sequence.
Thus, the whole sequence G1, . . ., and thus the whole
sequence D1, . . ., must be of finite length.

For any grammar G ∈ Gk-HR, let R be the relation
between the xth occurrence of terminal l and some
terminal lx, i.e., we define an alphabet that contains k

copies of each terminal symbol. This way, we can ob-
tain a grammar in G ∈ Gk-HR, k = 1 for any grammar
in G ∈ Gk-HR for any k. This relation is finite-valued,
so Theorem 2 applies and finite elasticity for k = 1
generalizes to k ≥ 1.

The relation between derivation trees and their yields
is finite-valued, given the definition of derivation trees
and the restriction that every rhs must contain at least
one terminal hyperedge, so by Theorem 2 we obtain:

Corollary 1. For any k, L(Gk-HR) has finite elasticity
and is thus learnable from positive data (hypergraphs)
by a consistent and conservative learner.
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Costa Florêncio, C. (2008). Learning node label controlled
graph grammars: Extended abstract. Proceedings of
ICGI’08, 9th International Colloquium on Grammati-
cal Inference, St Malo, Britanny, France (pp. 286–288).
Springer Verlag.

Gold, E. M. (1967). Language identification in the limit.
Information and Control, 10, 447–474.

Habel, A. (1992). Hyperedge replacement: Grammars and
languages. Secaucus, NJ, USA: Springer-Verlag New
York, Inc.

Jeltsch, E., & Kreowski, H.-J. (1991). Grammatical infer-
ence based on hyperedge replacement. Proc. Interna-
tional Workshop on Graph Grammars and Their Appli-
cation to Computer Science (pp. 461–474). Springer.

Kanazawa, M. (1994). A note on language classes with fi-
nite elasticity (Technical Report CS-R9471). CWI, Am-
sterdam.

Kukluk, J. P., Holder, L. B., & Cook, D. J. (2008). Infer-
ence of edge replacement graph grammars. International
Journal on Artificial Intelligence Tools, 17, 539–554.

Motoki, T., Shinohara, T., & Wright, K. (1991). The cor-
rect definition of finite elasticity: Corrigendum to iden-
tification of unions. The Fourth Workshop on Compu-
tational Learning Theory. San Mateo, Calif.: Morgan
Kaufmann.

Wright, K. (1989). Identification of unions of languages
drawn from an identifiable class. The 1989 Workshop
on Computational Learning Theory (pp. 328–333). San
Mateo, Calif.: Morgan Kaufmann.


