
Abstract: MAP Structured Prediction by Sampling

Shankar Vembu shankar.vembu@iais.fraunhofer.de
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We consider maximum a posteriori (MAP) parame-
ter estimation for structured prediction with exponen-
tial family models. In this setting, the main difficulty
lies in the computation of the partition function and
the first-order moment of the sufficient statistics. We
consider the case that efficient algorithms for exact
uniform sampling from the output space exist. This
assumption is orthogonal to the typical assumptions
made in structured output learning. It holds, in par-
ticular, for the highly relevant problem of sampling po-
tent drugs. Under our uniform sampling assumption,
we show that exactly computing the partition function
is intractable (Section 2), but it can be approximated
efficiently (Section 3). Furthermore, we show that the
first-order moment of the sufficient statistics can be
approximated (Section 4) and that we can sample ac-
cording to the estimated distribution (Section 5). We
also present some application settings (Section 6).

1. Preliminaries and Problems

We use [[n]] to denote {1, . . . , n}. Let X and Y be
the input and the output space respectively, where Y
is parameterised by some finite alphabet Σ. For in-
stance, Y can consist of strings, trees, or graphs over
Σ. Let {xi, yi}i∈[[m]] ⊆ X ×Y be a set of observations.
Our goal is to find θ as the MAP parameters of the
conditional exponential family model:

p(y | x, θ) = exp(〈φ(x, y), θ〉)/Z(θ|x) ,

where φ(x, y) are the joint sufficient statistics of x and
y, and Z(θ|x) =

∑
y∈Y exp(〈φ(x, y), θ〉) is the partition

function. Imposing a normal prior on θ, this leads to
minimising the following function:

‖θ‖2

2σ2
+

1
m

m∑
i=1

lnZ(θ | xi)−

〈
m∑

i=1

φ(xi, yi), θ

〉
,

where σ2 > 0 is the variance of the prior. The first
difficulty lies in the following problem:

Partition: For a class of output structures Y over

an alphabet Σ, an input structure x ∈ X , a polyno-
mial time computable map φ : X × Y → Rd, and a
parameter θ, compute the partition function Z(θ|x).

To apply efficient iterative optimisation methods we
also need the gradient of the log-partition function,
i.e., the first order moment of the sufficient statistics
∇θ lnZ(θ|x) = Ey∼p(y|x,θ)φ(x, y). We thus also con-
sider the following problem:

Moment: For a class of output structures Y over
an alphabet Σ, an input structure x ∈ X , a poly-
nomial time computable map φ : X × Y → Rd,
a parameter vector θ, and a vector z, compute〈
Ey∼p(y|x,θ)φ(x, y), z

〉
.

Throughout this paper, we assume that ‖φ(x, y)‖ ≤ R,
‖θ‖ ≤ B, and ‖z‖ ≤ G for constants R,B, and G. We
call an algorithm efficient if it has runtime polynomial
in |Σ| and the size of the observations.

2. Hardness of Partition

We first show that no algorithm can efficiently solve
Partition on the class of problems for which an effi-
cient approach to uniform sampling exists.

Theorem 2.1 Unless P=NP, there is no efficient al-
gorithm for Partition on the class of problems for
which we can efficiently sample output structures uni-
formly at random.

To prove this theorem we suppose such an algorithm
existed, consider a particular class of structures, and
show that the algorithm could then be used to solve an
NP-hard decision problem. We use that (a) cyclic per-
mutations of subsets of the alphabet Σ can be sampled
uniformly at random in time polynomial in |Σ|; and (b)
there is no efficient algorithm for Partition for the
set of cyclic permutations of subsets of the alphabet Σ
with φuv(x, y) = 1 if {u, v} ∈ y and 0 otherwise. Here
(a) follows from (Jerrum et al., 1986). To prove (b),
we show that by applying such an algorithm to a mul-
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tiple of the adjacency matrix of an arbitrary graph and
comparing the result with |Σ|3 we could then decide if
the graph has a Hamiltonian cycle.

3. Approximating Partition

In this section, we give an approximation algorithm
for Partition under the assumption that we can sam-
ple efficiently from the distributions p(y | x, θ). This
assumption will be reduced to our uniform sampling
assumption in Section 5.

Definition 3.1 Suppose f : P → R+ is a function
that maps problem instances P to positive real num-
bers. A randomised approximation scheme for P is a
randomised algorithm that takes as input an instance
p ∈ P and an error parameter ε > 0, and produces as
output a number Q such that

Pr[(1− ε)f(p) ≤ Q ≤ (1 + ε)f(p)] ≥ 3
4

.

A randomised approximation scheme is said to be fully
polynomial (FPRAS) if it runs in time polynomial in
the size of p and 1/ε.

Concentration inequalities are often used in machine
learning to bound the deviation of an approximation
from its real value. For Partition, however, this leads
to bounds that degrade with |Y| which typically grows
exponentially in our input. We hence employ the ap-
proach of (Jerrum & Sinclair, 1996) to express the
partition function as a telescoping product of ratios
of partition functions and obtain:

Theorem 3.1 There is an FPRAS for Partition on
the class of output structures for which it is possi-
ble to sample efficiently according to the distributions
p(y | x, θ).

With real parameters 0 = β0 < β1 · · · < βl = 1, known
as the cooling schedule, we express the partition func-
tion as the telescoping product

Z(θ|x)
Z(βl−1θ|x)

× Z(βl−1θ|x)
Z(βl−2θ|x)

× · · · Z(β1θ|x)
Z(β0θ|x)

×Z(β0θ|x) .

In particular, with an integer parameter p ≥ 3, we
choose the following cooling schedule: l = pdR||θ||e;
βj = j/(pR‖θ‖) for all j ∈ [[l−1]]. Now, define the ran-
dom variable fi(y) = exp[(βi−1 − βi) 〈φ(x, y), θ〉], for
all i ∈ [[l]]. Observe that fi(y) with y chosen according
to p(y | x, βiθ) is then an unbiased estimator for the ra-
tio ρi = Z(βi−1θ|x)

Z(βiθ|x) . This ratio can now be estimated by
sampling according to the distribution p(y | x, βiθ) and
computing the sample mean of fi. It can be seen that

sufficiently low variance of each estimator is achieved
already with a polynomial number of samples. The
final estimator Z(θ|x) is then the product of the recip-
rocals of the individual ratios.

4. Approximating Moment

We now describe how to approximate the gradient-
vector multiplications with provable guarantees using
concentration inequalities. The gradient-vector multi-
plication is

〈∇θ lnZ(θ|x), z〉 = Ey∼p(y|x,θ) 〈φ(x, y), z〉 .

We use Hoeffding’s inequality to bound the deviation
of 〈∇θ lnZ(θ|x), z〉 from its estimate 〈d(θ|x), z〉 on a
finite sample of size S, where

d(θ|x) =
1
S

S∑
i=1

φ(x, yi) ,

and the sample is drawn according to p(y | x, θ).

Note that by Cauchy-Schwarz’s inequality
| 〈φ(x, yi), z〉 | ≤ RG for all i ∈ [[S]]. Applying
Hoeffding’s inequality, we then obtain the following
exponential tail bound:

Pr(| 〈∇θ lnZ(θ|x)− d(θ|x), z〉 | ≥ ε) ≤ 2 exp
(
−ε2S

2R2G2

)
.

5. Sampling Techniques

The main contribution of this section is a Metropolis
process (Metropolis et al., 1953) that can be used to
sample structures from p(y | x, θ) given that there ex-
ists a uniform sampler for Y. The following Markov
chain (Meta) is hence the last remaining step needed
to reduce approximating Partition and Moment to
uniform sampling: In any state y, select the next state
z uniformly at random and move to z with probability
min

(
1, p(z|x,θ)

p(y|x,θ)

)
.

We have two results regarding the mixing time of this
chain using coupling (Aldous, 1983) and coupling from
the past (Propp & Wilson, 1996), respectively.

Theorem 5.1 The mixing time of Meta is bounded
from above as follows:

d(ln ε−1)/ ln(1− exp(−2BR))−1e ;

and the Markov chain Meta can be used to obtain an
exact sample according to the distribution p(y | x, θ)
with expected running time bounded from above by
exp(2BR).
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The implication of these results is that we only need
to have an exact uniform sampler in order to obtain
exact/approximate samples from p(y | x, θ). With an
additional factor of O(ln(1/δ)) time, this is sufficient
for an FPRAS.

6. Application Settings

We now describe how to sample exactly and uni-
formly at random for three combinatorial structures
frequently used in machine learning. We then have all
the ingredients to approximate Partition and Mo-
ment.

Vertices of a hypercube: The set of vertices of a
hypercube is used as the output space in multi-label
classification problems (see, for example, Elisseeff and
Weston (2001)). An exact uniform sample can be ob-
tained by tossing an unbiased coin for each label.

Permutations: The set of permutations is used as
the output space in label ranking problems (see, for
example, Dekel et al. (2003)). An exact sample can
be obtained uniformly at random by generating a se-
quence (of length d, the number of labels) of integers
where each integer is sampled uniformly from the set
[[d]] without replacement.

Subtrees of a tree: Let T = (V,E) denote a di-
rected, rooted tree with root r. Let Y be the class of
subtrees of T also rooted at r. Such rooted subtrees
from a rooted tree find applications in multi-category
hierarchical classification problems as considered by
Cesa-Bianchi et al. (2006). To generate samples of
subtrees uniformly at random we employ the reduc-
tion from uniform sampling to counting (Jerrum et al.,
1986). We consider a string representation of the sub-
trees and need to count the number of suffixes that
complete a given prefix into a valid string, i.e., a string
that represents a tree. This can be accomplished us-
ing dynamic programming techniques similar to the
one used in (Collins & Duffy, 2001)

7. Conclusions

We considered structured prediction problems for
classes of output structures that can be sampled uni-
formly at random. This assumption is orthogonal
to the typical assumptions made in other approaches
(Collins, 2002; Taskar et al., 2005; Tsochantaridis
et al., 2005). The assumptions made in these ap-
proaches rely on the problem of deciding if a given
structure is optimal for a given input and hypothesis.
If this problem is not in NP, they cannot be applied
efficiently. For many combinatorial structures of inter-

est, this problem is, however, coNP-complete and thus
not in NP unless coNP=NP. A simple example for a
class of hard output structures are cycles.

Assuming that we can uniformly sample output struc-
tures, we considered MAP parameter estimation for
conditional exponential family models. We showed
that while exactly computing the partition function
is infeasible, the partition function as well as the first-
order moment of the sufficient statistics can be ap-
proximated efficiently. Our results are applicable to
many classes of combinatorial output structures in-
cluding the highly relevant problem of sampling potent
drugs via (Goldberg & Jerrum, 1997).
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