
Knowledge-Directed Theory Revision

Kamal Ali, Kevin Leung, Tolga Konik, Dongkyu Choi, and Dan Shapiro

Cognitive Systems Laboratory
Center for the Study of Language and Information

Stanford University, Stanford, CA 94305

kamal3@yahoo.com, kkleung@stanford.edu, konik@stanford.edu,
dongkyuc@stanford.edu, dgs@csli.stanford.edu

Abstract. Using domain knowledge to speed up learning is widely ac-
cepted but theory revision of such knowledge continues to use general
syntactic operators. Using such operators for theory revision of teleore-
active logic programs is especially expensive in which proof of a top-level
goal involves playing a game. In such contexts, one should have the option
to complement general theory revision with domain-specific knowledge.
Using American football as an example, we use Icarus’ multi-agent tele-
oreactive logic programming ability to encode a coach agent which infers
faults during a game and at its conclusion applies procedural attachments
to fix programs of the other agents. Our results show effective learning
using as few as twenty examples. We also show that structural changes
made by such revision can produce performance gains that cannot be
matched by doing only numeric optimization.

1 Introduction

Teleoreactive logic programs (TLPs) hosted in systems such as Icarus [1] are
programs that are goal-oriented yet able to react when an external factor may
cause already achieved subgoals to become false. A TLP consists of a graph
(hierarchy) of first-order rules and a corresponding graph of skills. Proof of a
top-level goal starts by forward chaining from a set of facts - the perceptual
buffer - to compute its transitive closure. Next, proof of the top-level goal is
attempted using backward chaining. When reaching a leaf in the proof tree
which is currently false, the teleoreactive framework will switch to a skill tree,
back-chaining until it reaches a leaf skill which can be executed.

Theory revision of skills is different than revision of concepts in that many
candidate revisions cannot be repeatedly evaluated against a static training set.
As a skill is changed, it forces the environment to react. Evaluation of a candi-
date revision of a skill requires the game to be played again - several times for
stochastic domains. Thus it becomes imperative to reduce the number of training
examples by orders of magnitude. This leads to the central thesis of this paper:
to use domain-specific revision knowledge when available in addition to general
syntactic revision operators.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



II

In American football, for example, it is easy to elicit theory revision operators
that correspond to variations that a coach may try. For instance, a rule may
specify that if throwing to a particular receiver does not work, one should try
another eligible receiver. The revision knowledge embodied here is that there is
a subset of players that can be thrown to, and that one need not only throw to
the player currently specified in the logic program.

To implement domain-specific theory revision, we take advantage of a recent
extension to Icarus [1] - multi-agent capability. A natural and elegant way to
exploit the multi-agent ability for theory revision is to create a “coach agent”
whose concepts correspond to faults observed while the program is in play and
whose skills correspond to fixes. As the game proceeds, each agent uses its infer-
ences to decide which skills to execute. At each time tick, the coach agent also
makes inferences too - some of them corresponding directly to faults, others used
in support of faults. After the game is over, skills of the coach agent are applied
- these skills are implemented by rules whose preconditions are arbitrary com-
binations of faults and whose actions involve modifying programs of the other
agents. Our results in section 5 show that using a proof-of-concept small revision
theory using about a dozen faults and ten fixes, we are able to get significant
improvement using just twenty training examples.

With regard to prior work, these “debugging rules” are similar in sprit to
declarative theory refinement operators other ILP systems use, but unlike theory
refinement operators that are not particularly designed for temporal events, the
debugging rules of our system detect and accumulate problems over to the end of
the game. Other authors [2] have something equivalent to debugging knowledge
in the form of a critic agent but this agent does not rely on execution to find
faults - it does its work in the planning phase prior to execution. Gardenfors
[3] notes a similarity between belief revision and nonmonotonic logic - this is
analogous to our work except at a “meta” level: we are revising theories (not
beliefs) so the nonmonotonicity applies between revisions.

The rest of the paper is organized as follows: section 2 presents representation,
inference and execution of teleoreactive programs in Icarus. Section 3 explains
how we modeled American football in Icarus. Section 4 presents DOM-TR: our
theory revision algorithm that inputs domain-specific rules. Section 5 gives re-
sults showing how domain-specific theory revision allows effective learning using
just a few tens of examples.

2 Teleoreactive logic in Icarus

Representation - The Icarus architecture (details in [1]) represents concep-
tual and procedural knowledge using first-order logic (table 1). Concepts con-
sist of a generalized head, perceptual matching conditions in a :percepts field,
tests for constraints in a :tests field, and references to other concepts in the
:relations field. For example, the concept cch-near matches against two ob-
jects of type agent, and binds values to variables (indicated with ?). Skills (right
column in table 1) are also represented with generalized heads and bodies - the



III

body can refer to directly executable procedural attachments in the actions
clause or to other skills (the subgoals clause).

Inference and Execution - Icarus accepts a user-provided top-level goal
per agent, the set of agents being pre-defined by a user. Icarus performs back-
ward chaining on the top-level goal, terminating either in true literals or false
literals for which it can find a skill to execute. Next, backward chaining is per-
formed in the skill hierarchy until it reaches a leaf skills with procedural attach-
ments. Once Icarus finds active skill paths for all the agents, it simultaneously
executes all actions in one time tick.

For example, the second skill in the right column on table 1 shows that
to achieve the goal QB-play 11-1-013-1, the QB agent must execute its corre-
sponding skill - QB-play 11-1-013-1 - which entails making true in sequence
the four sub-goals specified in its subgoals clause. Teleoreactivity is possible
in this domain since, for example, the pre-condition of a skill that takes several
time ticks to complete may become false while the skill is being executed, forcing
Icarus to select a different skill or subgoal.

((cch-near ?a1 ?a2) (RWR-play 11-1-013-1)
:percepts ((agent ?a1 x ?x1 y ?y1) :percepts ((agent ?N role RWR

(agent ?a2 x ?x2 y ?y2)) startx ?X starty ?Y))
:tests ((<= (sqrt (+ (expt (- ?x1 ?x2) 2) :actions ((*startAt RWR ?X ?Y)

(expt (- ?y1 ?y2) 2))) (*PassRouteCornerLeftAtYard
*threshold*))) RWR *RWR-ydsb4diagLeft*)

(*finish ?N)))
((cch-covered-recipient ?a1 ?a2)
:percepts ((agent ?a1 team offense recipient t) ((QB-play 11-1-013-1)

(agent ?a2 team defense)) :percepts ((playState 11-1-013-1)
:relations ((cch-near ?a1 ?a2))) (agent ?N role QB

startx ?X starty ?Y closestRcvr ?R))
((cch-open-recipient ?agent) :subgoals ((startAt QB)
:percepts ((agent ?agent team offense recipient t)) (QBFallback 11-1-013-1)
:relations ((not (waitForReceivers 11-1-013-1)

(cch-covered-recipient ?agent ?a2)))) (pass ?R)))

Table 1. Some sample concepts and skills in the football domain.

3 American Football - An example domain

For the American football domain, Icarus controls the offensive team. We define
one agent per player on the offensive team and an additional agent for the coach.
The agents execute their skills against an “environment” that is managed by the
RUSH football simulator [4]. RUSH controls the defense, physics of the ball and
stochasticity of the environment.

We use the system in [5] to transform video of real games into a sequence of
segments per player. Each segment consists of a symbolic label and numeric para-
meters - for example, slantLeft(253,283,RWR,10) indicates the Right Wide-
Receiver should run diagonally for ten yards from time ticks 253 to 283. To
translate this into a logic program for Icarus, each sequence is translated into an



IV

Icarus skill as in the right column of table 1. Constants in the skills are replaced
by variables (parameters) that have those constants as their default values. For
example, 10 becomes the variable (parameter) *RWR-yardsb4diagLeft*.

4 Theory Revision

Fault: cch-farther-open-recipient(X,Y)
Description: X is an open receiver farther downfield than Y
Fix: Change intended receiver to X from Y

Fault: cch-crowded-recipients(X,Y)
Description: Receivers X and Y are too close to each other
Fix: Move the starting locations of each receivers 2 yards apart

Table 2. Examples of domain-specific faults and fixes.

Table 2 gives a few examples of the revision knowledge which was elicited
from an expert. Note that it is generalized to first order and can either make
changes that are local to an agent or changes that involve multiple agents. By
execution, we may find, as shown in rule 1 in Table 2 that X manages to get
more open and thus the ball should be thrown to X. The revision operators can
change variables into constants and vice versa, replace predicates, introduce new
variables and introduce negation. Not only is the primary theory first-order, but
the revisions themselves are first order. For instance, the skill in the lower right
of table 1 was modified by theory revision which introduced a new variable (?R)
whose value is picked up from the :percepts clause and used in the :subgoals
clause.

learn-structure(MaxDepth)
1 Depth = Depth + 1
2 For N (4) times:
3 Simulate the play, record faults into Faults
4 If Faults is empty then exit
5 For fix in fixes(Faults) do
6 Temporarily apply fix
7 Simulate N (4) times, recording rewards
8 AR = reward from best fault/fix pair
9 Improvement = AR - BestReward
10 if Improvement ≤ 0 then exit
11 else commit fix; BestReward = AR
12 If depth ≤ MaxDepth then go to 1

Table 3. DOM-TR: Structural Learning Breadth-First Search

Table 3 presents DOM-TR - a breadth-first algorithm that inputs a domain-
specific debugging theory to do theory revision. The domain-specificity of the
debugging theory greatly reduces the breadth of the search - for our current
knowledge base, the breadth factor is usually only one or two. Note that the



V

core step of the algorithm - evaluating a fix - involves playing several (N = 4)
games1 because of the stochasticity of this domain.

Table 3 shows that the algorithm begins by playing N games, recording
all occuring faults. The other purpose of playing these games is to establish a
baseline reward value. After playing the N initial games, it iterates over fixes
whose preconditions match the observed faults. For each fix, it applies the fix,
plays N games to compute average reward and then undoes the fix. If the best fix
so found produces an improvement compared to the baseline, it is permanently
applied, otherwise the search terminates. We do not check explicitly for cycles
(where a revision undoes a previous revision), opting instead to limit the depth
of the revision tree to some small value such as MaxDepth = 5.

5 Results

Fig. 1. Learning curve for theory revision

For our experimental methodology, we randomly select an offense from our
library of videos and a defense from RUSH’s library. In each such trial, DOM-TR is
used to produce a learning curve. The process is repeated twenty times. Figure 2
shows the results - application of DOM-TR to our small prototype revision theory
improves performance from a baseline figure of 1 yard to 4 yards. Although this
gain may appear numerically small, a repeatable three-yard gain using only 20
plays (and given our revision theory is just a proof-of-concept) is significant in
American football.

In a second experiment, we wanted to compare structural learning using
DOM-TR to an algorithm that only did numeric optimization (by hill-climbing over
all parameters mentioned in the theory). The results in figure 2 show that by
the end of the theory revision phase, x = 20, DOM-TR has achieved a reward of 6.
The numeric-only algorithm requires approximately an order of magnitude more
examples (x = 160) to reach the same reward level. The upper learning curve in

1 Early experiments showed that values of N higher than 4 did not yield substantially
greater benefits.



VI

Fig. 2. Learning curves for two algorithms: upper curve does theory revision followed
by parameter hill-climbing, bottom curve does only parameter optimization.

figure 2 is obtained by doing theory revision (upto the 20’th training example)
and hill-climbing thereafter. Furthermore, even asymptotically, the algorithm
that only does parameter optimization (lower curve) cannot match the reward
obtained by the hybrid algorithm (upper curve) that combines structure learning
with numeric optimization.

6 Conclusions

In domains where training examples are orders of magnitude more expensive
than usual and where skills need to be revised, general syntactic-only theory
revision needs to be augmented by domain-specific revision knowledge. This
paper demonstrates theory revision in the context of multi-agent teleoreactive
logic programs by the implementation of a “coach” agent whose concepts corre-
spond to faults and whose skills correspond to fixes that modify those agents’
programs. Using American football as an example, we have demonstrated that
domain-specific theory revision can produce meaningful gains using as few as
twenty examples and that this affords an order of magnitude faster learning
that that realized by doing only parameter optimization.

References

1. Asgharbeygi, N., Nejati, N., Langley, P., Arai, S.: Guiding inference through rela-
tional reinforcement learning. In: Proceedings of the International Conference on
Inductive Logic Programming. (2005)

2. Wilkins, D., Myers, K., Lowrance, J., Wesley, L.: A multiagent planning architec-
ture. In: Proceedings of AIPS-98. (1998)

3. Gardenfors, P.: Belief revision and nonomotonic logic: Two sides of the same coin?
In: Proceedings of the ninth European Conference on Artificial Intelligence, Pitman
Publishing (1990)

4. Sourceforge: Sourceforge.net - rush 2005. http://sourceforge.net/projects/rush2005/
(2005)

5. Hess, R., Fern, A.: Discriminatively trained particle filters for complex multi-object
tracking. In: IEEE Conference on Computer Vision and Pattern Recognition. (2009)


