
Towards a system based on asymmetric relative

minimal generalisation

Stephen Muggleton, José Santos and Alireza Tamaddoni-Nezhad

Department of Computing,Imperial College London
Email: {shm,jcs06,atn}@doc.ic.ac.uk

Abstract. Over the last decade Inductive Logic Programming systems
have been dominated by use of top-down refinement search techniques.
In this paper we re-examine the use of bottom-up approaches to the
construction of logic programs. In particular, we explore an asymmetric
variant of Plotkin’s Relative Least General Generalisation (RLGG) which
is based on subsumption relative to a bottom clause. With Plotkin’s
RLGG, clause length grows exponentially in the number of examples.
By contrast, in the Golem system, the length of ij-determinate RLGG
clauses were shown to be polynomially bounded for given values of i
and j. However, the determinacy restrictions made Golem inapplicable
in many key application areas, including the learning of chemical prop-
erties from atom and bond descriptions. In this paper we show that with
Asymmetric Relative Minimal Generalisations (or ARMGs) relative to
a bottom clause, clause length is bounded by the length of the initial
bottom clause. ARMGs , therefore do not need the determinacy restric-
tions used in Golem but still have a polynomial-time construction. An
algorithm is described for constructing ARMGs together with some ini-
tial results on the clause lengths for some well-known ILP applications.
In a longer follow-up paper we aim to extend the analysis and imple-
mentation of a system called ProGolem which combines bottom-clause
construction in Progol with a Golem control strategy for constructing
multiple clause predicate definitions.

1 Introduction

There are two key tasks at the heart of ILP systems: 1) enumeration of clauses
which explain one or more of the positive examples and 2) evaluation of the
numbers of positive and negative examples covered by these clauses. Top-down
refinement techniques such as those found in [11, 8, 9], use a generate-and-test
approach to problems 1) and 2). A new clause is first generated by application of
a refinement step and then tested for coverage of positive and negative examples.

It has long been appreciated in AI [6] that generate-and-test procedures
are less efficient than ones based on test-incorporation. The use of the bottom
clause in Progol [4] represents a limited form of test-incorporation in which, by
construction, all clauses in a refinement graph search are guaranteed to cover
at least the example associated with the bottom clause. The use of Relative

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

Least General Generalisation (RLGG) in Golem [3] provides an extended form
of test-incorporation in which constructed clauses are guaranteed to cover a
given set of positive examples. However, in order to guarantee polynomial-time
construction the form of RLGG in Golem was constrained to ij-determinate
clauses. Without this constraint Plotkin [7] shows that the length of RLGG
clauses grows exponentially in the number of positive examples covered.

In this paper we explore an asymmetric variant of Plotkin’s RLGG which is
based on subsumption order relative to a bottom clause [13]. We give a defini-
tion for Asymmetric Relative Minimal Generalisation (ARMGs) and show that
the length of ARMGs is bounded by the length of the initial bottom clause.
Hence, unlike in Golem, we do not need the determinacy restrictions to guaran-
tee polynomial-time construction. However, we show that the resulting ARMG
is not unique and that the operation is asymmetric. ARMG can easily be ex-
tended to the multiple example case by iteration. We show the outcome of initial
experiments with an implementation of ARMG in which a bottom clause is pro-
gressively reduced to cover an increasing set of positive examples.

The paper is arranged as follows. In Section 2 we discuss subsumption relative
to a bottom clause. ARMG is introduced in Section 3 and some of its properties
are demonstrated. An algorithm for ARMG is given in Section 4 and an initial
implementation of this algorithm is examined in Section 5. Section 6 concludes
the paper.

2 Subsumption relative to bottom clause

In a previous paper [13] we introduced a subsumption order relative to a bottom
clause and demonstrated how clause refinement in a Progol-like ILP system can
be characterised with respect to this order. It was shown that, unlike for the
general subsumption order, efficient least general generalisation operators can
be designed for subsumption order relative to a bottom clause (i.e. lgg⊥). In this
section we briefly review the notion of subsumption order relative to bottom
clause which is used in the definition of ARMG in this paper.

Definition 1 (Bottom clause ⊥e). Let h, i be natural numbers, B be a set of
Horn clauses, E be a set of positive and negative examples (ground unit clauses),
M be a set of mode declarations and Li(M) be a depth-bounded mode language
as defined in [4]. Let e be a positive example in E. ⊥e is the most specific clause
in Li(M) such that B∧⊥e∧ e ⊢h � where ⊢h � denotes derivation of the empty
clause in at most h resolutions.

Definition 2 (Subsumption relative to ⊥). Let Li(M) and ⊥e be as defined
in Definition 1 and C and D be clauses in Li(M). We say C subsumes D relative
to ⊥e, denoted by C �⊥ D, iff there exist substitutions θ and σ such that θ
induces a one-one correspondence for each literal l in C to a literal m in D such
that lθ = m and likewise σ induces a one-one correspondence between all literals
in D and a subset of literals in ⊥e.

3 Asymmetric relative minimal generalisation

In this section we define a variant of Plotkin’s RLGG which is based on sub-
sumption order relative to a bottom clause. Plotkin’s RLGG and the relative
least general generalisation (lgg⊥) in [13] were symmetric in the sense that
lgg⊥(C, D) = lgg⊥(D, C). However, the relative common generalisation con-
sidered in this paper is asymmetric and is denoted by cg⊥(C|D) and in general
cg⊥(C|D) 6= cg⊥(D|C). In the following we define asymmetric relative common
generalisation and asymmetric relative minimal generalisation.

Definition 3 (Asymmetric relative common generalisation). Let E, ⊥e

be as defined in Definition 1 and e and e′ be positive examples in E. C is a
common generalisation of e′ relative to ⊥e, denoted by C ∈ cg⊥(e′|e), if C �⊥ ⊥e

and C subsumes ⊥e′ .

Definition 4 (Asymmetric relative minimal generalisation). Let E, ⊥e

be as defined in Definition 1, e and e′ be positive examples in E and cg⊥(e′|e)
be as defined in Definition 3. C is a minimal generalisation of e′ relative to ⊥e,
denoted by C ∈ mg⊥(e′|e), if C ∈ cg⊥(e′|e) and C �⊥ C′ ∈ cg⊥(e′|e) implies C
is subsumption-equivalent to C′ relative to ⊥e.

The following theorem shows that the the length of ARMG is bounded by
the length of ⊥e.

Theorem 1. For each C ∈ mg⊥(e′|e) the length of C is bounded by the length
of ⊥e.

Proof. Let C ∈ mg⊥(e′|e). Then by definition C �⊥ ⊥e and according to Def-
inition 2 there is a one-one correspondence between the literals of C and the
literals of ⊥e. Hence, the length of C is bounded by the length of ⊥e. �

It follows from Theorem 1 that the number of literals in an ARMG is bounded
by the length of ⊥e, which is shown in Theorem 26 in [4] to be polynomially
bounded in the number of mode declarations for fixed values of i and j. Hence,
unlike the RLGGs used in Golem, ARMGs do not need the determinacy restric-
tions and can be used in a wider range of problems including those which are
non-determinate. The following theorem shows that ARMGs are not unique.

Theorem 2. The set mg⊥(e′|e) can contain more than one clause which are
not subsumption-equivalent relative to ⊥e.

Proof. Let M = {p(+), q(+,−), r(+,−)}, B = {q(a, a), r(a, a), q(b, b), q(b, c), r(c, d)},
e = p(a) and e′ = p(b). Then we have ⊥e = p(X)← q(X, X), r(X, X). The fol-
lowing clauses are both in mg⊥(e′|e): C = p(X) ← q(X, X), D = p(X) ←
q(X, Y), r(Y, Z). C and D are minimal but not subsumption-equivalent relative
to ⊥e. �

Asymmetric Relative Minimal Generalization (ARMG) Algorithm
Input: Positive examples e, e′, mode declarations M , background knowledge B

C is ⊥e = h← b1, .., bn

While there is a blocking atom bi wrt e′ in the body of C
Remove bi from C
Remove atoms from C which are not head-connected

Repeat
Output: C

Fig. 1. ARMG algorithm.

4 Algorithm for ARMG

An algorithm for constructing ARMGs is given in Figure 1. The following defi-
nitions are used to describe the ARMG algorithm.

Definition 5 (Head-connectness). A definite clause h ← b1, .., bn is said to
be head-connected iff each body atom bi contains at least one variable found either
in h or in a body atom bj, where 1 ≤ j < i.

Definition 6 (Blocking atom). Let B be background knowledge, E+ the set
of positive examples, e ∈ E+ and C = h← b1, . . . , bn be a definite clause. bi is a
blocking atom iff i is the least value such that for all θ, e = hθ, B 0 (b1, . . . , bi)θ.

The ARMG algorithm given in Figure 1 works by constructing the bottom
clause associated with a particular positive example, and then dropping a min-
imal set of atoms from the body such that the bottom clause subsumes the
bottom clause of a second positive example. Below we prove the correctness of
the ARMG algorithm.

Theorem 3 (Correctness of ARMG). Let B, M , E, ⊥e be as defined in Def-
inition 1, e and e′ be positive examples in E, mg⊥(e′|e) be as defined in Definition
4 and ARMG(e, e′, M, B) as given in Figure 1. Then C = ARMG(e, e′, M, B)
is in mg⊥(e′|e).
Proof. Assume C 6∈ mg⊥(e′|e). In this case, either C is not a common generali-
sation of e and e′ or it is not minimal. However, it is a common generalisation of
e and e′ since by construction it is a subset of ⊥e in which all blocking literals
with respect to e′ are removed. So, C must be non-minimal. If C is non-minimal
then it is subsumed by C′ ∈ mg⊥(e′|e), which must either have literals not found
in C or there is a substitution θ such that Cθ = C′. However, we have deleted
the minimal set of literals, so it must be the second case. However, in the second
case θ must be a renaming since the literals in C are all from ⊥e. Hence, C and
C′ are variants which contradicts the assumption and completes the proof. �

Figure 2 gives a comparison between Golem’s determinate RLGG and the
Asymmetric RMGs generated by the ARMG algorithm on Michalski’s trains
problem [5]. Note that Golem’s RLGG cannot handle the predicate has car
because it is non-determinate. The first ARMG (2) subsumes the target concept
which is eastbound(A) :- has car(A,B), closed(B), short(B). Also, note that in
this example RLGG (1) is shorter than ARMGs (2,3) since it only contains
determinant literals.

1. RLGG(e1, e2)) = RLGG(e2, e1) = eastbound(A) :- infront(A,B), short(B), open(B),
shape(B,C), load(B,triangle,1), wheels(B,2), infront(B,D), shape(D, rectangle), load(D,E,1),
wheels(D,F), infront(D,G), closed(G), short(G), shape(G,H), load(G,I,1), wheels(G,2).

2. ARMG(e1, e2) = eastbound(A):- has car(A,B), has car(A,C), has car(A,D), has car(A,E), in-
front(A,E), closed(C), short(B), short(C), short(D), short(E), open(B), open(D), open(E),
shape(B,F), shape(C,G), shape(D,F), shape(E,H), load(D,I,J),2), wheels(E,2)

3. ARMG(e2, e1) = eastbound(A):- has car(A,B), has car(A,C), has car(A,D), infront(A,D),
closed(C), short(B), short(D), open(D), shape(B,E), shape(D,E), load(B,F,G), load(D,H,G),
wheels(B,2), wheels(D,2)

Fig. 2. A comparison between Golem’s determinate RLGG (1) and the Asymmetric ARMGs (2,3).
Note that Golem’s RLGG cannot handle the predicate has car because it is non-determinate. The
first ARMG (2) subsumes the target concept which is eastbound(A) :- has car(A,B), closed(B),
short(B).

5 Empirical evaluation

In this section we evaluate an implementation of the ARMG algorithm on dif-
ferent datasets. We compare the size and coverage of ARMGs as the number of
examples used to construct the ARMGs is increased.

Materials The ARMG algorithm was implemented in YAP Prolog 5.1.4
and is publicly available at http://www.doc.ic.ac.uk/∼jcs06. Several well-known
ILP datasets have been used: Pyrimidines [1] is an examples of a determinate
drug design problem. DSSTox [10], Carcinogenesis [12] and Alzheimers-Amine [2]
are examples of non-determinate drug design problems, which therefore Golem
cannot be applied to.

Methods For each of the datasets, a random sample of tuples of positive
examples was selected. The tuple size, N , varied from 1 to 5 (i.e. samples of
single examples, pairs of examples, triples, . . .). The number of tuples in each
sample is N ∗ |E+| (i.e. sample size increases linearly with tuple size). For N = 1
the ARMG is simply the bottom clause. The following settings were used in the
experiments: i = 3 for the bottom clause and max.resolutions = 4 ∗ |C| to test
if an example is entailed by an ARMG. For each N in each dataset the average
lengths of their ARMG as well as the ARMG positive coverage was computed.
The lengths are reported as a fraction of the bottom clause length and the
coverage is reported as a fraction of the total number of positive examples.

Results and discussion Results are summarised in Figure 3. In this figure
short dashed lines represent the ARMG lengths and long dashed lines represent
the ARMG coverages. When N = 1 the ARMG (i.e. bottom clause) coverage
is almost invariably single example (a tiny fraction of the positive examples)
and has maximum length. In general, the ARMG length follows an exponential
decay and, symmetrically, the coverage has an exponential growth (since shorter
clauses are more general). The rates of the exponential decay/growth vary with
the dataset. In the longer version of this paper we will report full results (i.e.
predictive accuracies and running times) for ProGolem, an ILP system which
uses ARMGs as its hypotheses derivation mechanism.

Fig. 3. ARMGs length (short dashed lines) and coverage (long dashed lines) as number
of examples increases

6 Conclusions and further work

In this paper we have proposed an asymmetric variant of Plotkin’s RLGG, called
ARMG. In comparison to the determinate RLGGs used in Golem, ARMGs are
capable of representing non-determinate clauses. Although this is also possible
using Plotkin’s RLGG, the cardinality of the Plotkin RLGG grows exponentially
in the number of examples. By contrast, an ARMG is built by constructing a
bottom clause for one example and then dropping a minimal set of literals to
allow coverage of a second example. By construction the clause length is bounded
by the length of the initially constructed bottom clause.

In the longer version of this paper we are aiming to provide details of a full
implementation of a system called ProGolem. ProGolem will use the same gen-
eral control structure as Golem, with ARMG in place of determinate RLGG.
The use of top-down ILP algorithms such as Progol, tends to limit the maxi-
mum complexity of learned clauses, due to a search bias which favours simplicity.
Long clauses generally require an overwhelming amount of search for systems
like Progol and Aleph. We intend to explore whether ProGolem will have any
advantages in situations when the clauses in the target theory are long and com-
plex. Relevant applications which require such target theories include design and
planning problems in which the target theory may involve complex conjunctions
of literals. For instance, in the case of design, a single clause may be used to
describe an entire digital circuit. Similarly, a plan may be described in a sin-

gle clause. We believe that such targets should be more effectively learned by a
bottom-up systems such as ProGolem since long clauses are easier to construct
using bottom-up search.

References

1. R.D. King, S.H. Muggleton, R. Lewis, and M. Sternberg. Drug design by machine
learning Proc. of the Nat. Aca. of Sci., 89(23):11322–11326, 1992.

2. R.D. King, A. Srinivasan, and M.J.E. Sternberg. Relating chemical activity to
structure New Gen. Comp., 13:411–433, 1995.

3. S. Muggleton and C. Feng. Efficient induction of logic programs. In S. Muggleton,
editor, Ind. Log. Prog., pages 281–298. Academic Press, 1992.

4. S.H. Muggleton. Inverse entailment and Progol. New Gen. Comp., 13:245–286,
1995.

5. S. Muggleton. Progol datasets. http://www.doc.ic.ac.uk/∼shm/Software/progol4.2/,
1996.

6. N.J. Nilsson. Principles of Artificial Intelligence. Tioga, 1980.
7. G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh

Univ., August 1971.
8. J.R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–

266, 1990.
9. L. De Raedt and M. Bruynooghe. A theory of clausal discovery. In Proc. of the

13th Int. J. Conf. on AI. MK, 1993.
10. A.M. Richard and C.R. Williams. Distributed structure-searchable toxicity

(DSSTox) public database network: A proposal. Mutation Research, 499:27–52,
2000.

11. E.Y. Shapiro. Algorithmic program debugging. MIT Press, 1983.
12. A. Srinivasan, , R.D. King S.H. Muggleton, and M. Sternberg. Carcinogenesis

predictions using ILP. In N.Proc. of the 7th Int. Conf. on ILP, pages 273–287. SV,
1997. LNAI 1297.

13. A. Tamaddoni-Nezhad and S.H. Muggleton. A note on refinement operators for
IE-based ILP systems. In Proc. of the 18th Int. Conf. on ILP, LNAI 5194, pages
297–314. SV, 2008.

