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Abstract. Creating an e�ective ensemble of clauses for large, skewed
data sets requires �nding a diverse, high-scoring set of clauses and then
combining them in such a way as to maximize predictive accuracy. We
have adapted the RankBoost algorithm in order to maximize area under
the recall-precision curve, a much better metric when working with highly
skewed data sets than ROC curves. We have also explored a range of
possibilities for the weak hypotheses used by our modi�ed RankBoost
algorithm beyond using individual clauses. We provide results on four
large, skewed data sets showing that our modi�ed RankBoost algorithm
outperforms the original on area under the recall-precision curves.
Keywords: Learning to Rank, Ensembles, Boosting

1 Introduction

Research over the past 15 years has shown an improvement in predictive accuracy
by using an ensemble of classi�ers [4] over individual classi�ers. In the Inductive
Logic Programming [6] domain ensembles have been successfully used to increase
performance [5,9,10]. Successful ensemble approaches must both learn individ-
ual classi�ers that work well with a set of other classi�ers as well as combine
those classi�ers in a way that maximizes performance. AdaBoost [8] is a well
known ensemble method that does both of these things. AdaBoost learns weak
hypotheses iteratively, increasing the weight on previously misclassi�ed exam-
ples so successive learners focus on misclassi�ed examples. AdaBoost combines
weak hypotheses into a single classi�er by using a weighted sum, where each
weak hypothesis is weighted according to its accuracy.

While AdaBoost focuses on improving accuracy of the �nal classi�er, other
boosting algorithms have been created that maximize other metrics. The objec-
tive of Freud and Schapire's RankBoost algorithm [7] is to maximize the correct
ordering of pairs in a list. Cortes and Mohri [1] later showed that when using
RankBoost with binary classes the objective of the algorithm also maximizes
the area under the receiver operator characteristic (AUROC) curve. AUROC is
a common metric used to discriminate between classi�ers. Davis and Goadrich
[3] however demonstrated that AUROC is not a good metric for discriminating
between classi�ers when working with highly skewed data where the negatives
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Modi�ed RankBoost Algorithm

Given: disjoint subsets of negative, X0, and positive, X1, examples
Initialize:

skew = |X0|
|X1| , w1(x) =


skew
|X0| if x∈X0

1
|X1| if x∈X1

for t = 1, ..., T :
Train weak learner, ht, using wt and skew.
Get weak ranking ht : X −→ R.
Choose αt ∈ R. (see text)
Update

wt+1(x) =

8<:
wt(x) exp(−αtht(x))

Z1
t

if x∈X1

wt(x) exp(αtht(x))
Z0

t
if x∈X0

where
Z1

t =
X

x∈X1

wt(x) exp(−αtht(x)), Z0
t = 1

skew
·
X

x∈X0

wt(x) exp(αtht(x))

Output the �nal ranking: H(x) =

TX
t=1

αtht(x).

Fig. 1. The modi�ed RankBoost algorithm for optimizing area under the recall-
precision curve.

outnumber the positives. They recommend using area under the recall-precision
curve (AURPC) when working with skewed data.

We demonstrate a modi�ed version of the RankBoost algorithm that works
well with skewed data. Its objective function seeks to maximize AURPC. We im-
plement a top-down, heuristic-guided search to �nd high-scoring clauses for the
weak hypotheses and then utilize our modi�ed RankBoost algorithm to combine
them into a single classi�er. We also evaluate several other possibilities for weak
hypotheses that use sets of the best-scoring clauses found during search.

2 Modi�ed RankBoost Algorithm

Freud and Schapire's RankBoost.B algorithm for bipartite data appears in Fig-
ure 1, with one modi�cation. We have modi�ed the sum of the weights on the
negative set to the skew between the size of the negative set and the size of the
positive set. We make this change to expose enough information to our weak
learner so that it can optimize the AURPC. We calculate the α parameter using

the so-called Third-Method of RankBoost where α = 0.5 ln
(

1+r
1−r

)
. In the origi-

nal algorithm Cortes and Mohri showed that r is a weighted version of AUROC.
For our algorithm, since we are trying to optimize for AURPC we have calcu-
lated weighted versions of recall and precision and used them in calculating the
AURPC. We then use this weighted version of AURPC as our r value.

As our weak learners, we use a greedy hill-climbing algorithm to �nd one
clause. We begin with the most general clause. All legal literals are considered
to extend the clause. The extension that improves the weighted AURPC the most



is selected and added to the clause. The process repeats until no improvement
can be found or some time limit or clause-length limit is reached. Each weak
hypothesis, ht(x), is the best scoring individual clause found during this search.
The weak hypothesis maps an example, x, to the range {0, 1} where the mapping
is 1 if the example is covered, 0 otherwise. The clause is then weighted by α.
The �nal score for an example is the weighted sum of all clauses that cover the
example. We call this learner RankBoost.Clause.

We have also explored other possibilities for both the weak learner and the
optimization function used by the greedy hill climber. When working with large
data sets the costly time step is often evaluating clauses against the training
data. Our goal in developing other weak learners was to create more accurate
models without increasing the number of clauses evaluated on training data.
One method of doing this is to retain more than just the best clause found
during search. Taking an idea from the Gleaner algorithm [9] which retains the
best clause found for each range of recall space, we have developed several other
weak learners. Here we report on a second weak hypothesis, RankBoost.Path,
that contains all clauses along the path from the most general clause to the
highest scoring clause. The weak hypothesis, ht(x), maps an example, x, to the
range [0, 1] by �nding the most speci�c of these clauses that covers the example.
The example is mapped to the real value corresponding to the fraction of the
total AURPC covered by this clause. The total AURPC, r, is the area under the
entire path rather than just the end clause, as is illustrated in Figure 2.

Fig. 2. Area under the recall-precision curve for a path of clauses learned during hill
climbing. The total grayed area is the total AURPC, r. If h(X):-p(X),q(X,Y) is the
most speci�c clause in the path to cover an example then ht(x) maps the example to
the value light gray area divided by total grayed area.

When calculating the AURPC we followed the algorithm outlined by Davis
and Goadrich [3] with two modi�cations to improve accuracy and increase speed.
First, we use a weighted version of recall and precision. Second, when calculat-
ing the area between two points in recall-precision space, A and B, Davis and
Goadrich suggest a discretized version that estimates the area under the curve.
We calculate it exactly using a closed form solution to the integral for the curve



between the two points,

ˆ TPB

TPA

x

x + FPA + s(x− TPA)
dx

where TP is the true positive weight and FP is the false positive weight. Pa-
rameter s is the local skew of false positives to true positives, s = FPB−FPA

TPB−TPA
.

3 Experimental Results

We modi�ed Aleph [12] to incorporate RankBoost and our modi�ed versions,
RankBoost.Clause and RankBoost.Path. We compared these algorithms using
AUROC and AURPC on four large, skewed data sets. Two data sets come from
the biomedical information extraction (IE) domain. The other two data sets
come from the medical diagnosis domain.

Protein Localization data set consists of text from 871 abstracts taken from
the Medline database. The task is to �nd all phrase pairs that specify a
protein and where it localizes in a cell. The data set comes from Ray and
Craven [11]. Additional hand annotation was done by Goadrich et al. [9] The
data set contains 281,071 examples with a positive/negative skew of 1:149.

Gene Disease data set also comes from Ray and Craven [11]. We utilized the
ILP implementation by Goadrich et al. [9] The task is to �nd all phrase pairs
showing genes and their associated disorder. the data set contains 104,192
examples with a positive/negative skew of 1:446.

Mammography1 data set is described by Davis et al. [2] It contains 62,219
�ndings. The objective with this data set is to determine if a �nding is
benign or malignant given descriptors of the �nding, patient risk factors,
and radiologist's prediction. The positive/negative skew is 1:121.

Mammography2 is a new data set that has the same task as Mammography1,
however the data was collected from mammograms from a second institution,
the University of Wisconsin Hospital and Clinics. The data set consists of
30,405 �ndings from 18,375 patients collected from mammograms at the
radiology department. The positive/negative skew is 1:86.

We ran 10 fold cross-validation for the mammography data sets and 5 for the IE
data sets. We ran each fold 10 times using a di�erent random seed and averaging
results for each fold. We then calculated average AURPC, AUROC, and standard
deviation across the di�erent folds. Also, to compare how quickly the ensembles
converged, we created learning curves with the x-axis showing the number of
clauses evaluated and the y-axis showing the average AURPC.

Table 1 shows average AURPC and AUROC results with standard devi-
ations for ensembles containing 100 weak learners for RankBoost and Rank-
Boost.Clause. These two algorithms are the best to directly compare since they
contain the same type of weak learners. RankBoost outperforms RankBoost.Clause
when comparing AUROC on three of the four data sets. The AUROC scores are



Data set AUROC AURPC

RankBoost RankBoost.Clause RankBoost RankBoost.Clause

Mammography 1 89.9± 4.2 88.1± 5.8 18.5± 5.7 32.9± 7.6

Mammography 2 92.5± 2.0 96.7± 1.1 16.2± 7.4 41.3± 10.6

Protein Localization 98.9± 0.1 97.9± 0.7 40.4± 7.9 40.5± 8.6

Gene Disease 98.2± 0.9 95.4± 2.4 32.9± 10.7 46.6± 11.9

Table 1. Average AUROC and AURPC percentages with standard deviations for sev-
eral large, skewed data sets using the RankBoost and RankBoost.Clause algorithms.
Bold indicates statistically signi�cant improvement at 5% con�dence level.

high and close together. This makes it di�cult to distinguish one algorithm from
another. However when comparing AURPC the di�erence between the two algo-
rithms is large. RankBoost.Clause outperforms RankBoost on three of the four
data sets. The variance is much larger for AURPC scores than for AUROC scores
because when recall is close to 0 variance in precision values is high.

Learning curves on the four data sets appear in Figure 3. Each graph shows
the AURPC on the y-axis by the number of clauses considered on the x-axis.
Each curve extends until 100 weak hypotheses have been found. We do this as
a way of showing that the various algorithms do di�erent amounts of work to
produce 100 hypotheses, a fact that would be lost if we simply extended all three
to the full width of the x-axis.

Our RankBoost.Path algorithm reaches an AURPC of 0.44 on the Protein
Localization data set after less than 20,000 clauses searched. The Gleaner algo-
rithm [9] takes over 100,000 clauses to surpass this level of performance. On the
Gene Disease data set our RankBoost.Clause algorithm reaches 0.48 AURPC
after 45,000 clauses searched while the Gleaner algorithm does not reach this
level of performance even after 10 million clauses searched. We have additional
results, not shown because of space constraints, using other weak learners that
combine variations of RankBoost.Clause and RankBoost.Path that demonstrate
other properties such as higher asymptotic performance but slower convergence.

4 Conclusion and Acknowledgments

Large, skewed data sets provide an interesting challenge for ILP. We have mod-
i�ed the RankBoost algorithm [7] to optimize area under the recall-precision
curve, a metric often used in these types of data sets. We evaluated several
types of weak learners using our modi�ed RankBoost algorithm compared with
standard RankBoost on four large, skewed data sets. Due to space constraints we
show results for two types of weak learners. Our modi�ed RankBoost algorithm
outperforms standard RankBoost when comparing AURPC. We gratefully ac-
knowledge the funding from USA grants R01 LM07050 and 1 R01 CA127379,
Houssam Nassif, David Page, and Ryan Woods and our anonymous reviewers
for their comments and suggestions.



Fig. 3. Learning curves for RankBoost, RankBoost.Clause and RankBoost.Path on
four large, skewed data sets.
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