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Abstract. Systems biology is an important application area for ILP.
We investigate learning networks of activity in response to stress in yeast
cells. Diverse heterogeneous empirical data is used rather than curated
knowledge sources. We find that although this representation is restricted
and predictive accuracy is low this can still lead to useful outputs.

1 Introduction

The number of organisms for which the complete genome (DNA sequence) is
available continues to grow, and there have been major advances in labora-
tory techniques to analyse complex cellular processes. This has led to systems
biology, in which responsive phenotypes, the measurable characteristics of the
organism in response to environmental or genetic perturbations, can be investi-
gated genome-wide, i.e., by collecting data on the activity of all the organism’s
genes simultaneously [10].

Thus we can investigate the cellular network response of the genes that give
rise to an observed phenotype as the downstream effect of an external stimulus
through signal transduction. For example, when cells adapt to sudden changes
in the environment, cellular network responses include the action of sets of tran-
scription factors (proteins) to activate sets of genes involved in biochemical path-
ways.

The baker’s and brewer’s yeast Saccharomyces cerevisiae is a key model or-
ganism for systems biology, due to the ease with which genetic manipulation can
be carried out. Importantly, many fundamental processes in yeast are conserved
through to humans [11]. However, although more than a decade has passed since
the sequencing of the complete yeast genome, around 25% of yeast genes still do
not have a known molecular function [12].

Data sets describing yeast cellular network responses derived from new high-
throughput genome-wide experimental techniques are increasingly available [6],
and are often inherently relational. Therefore the aim of this work is to apply
ILP to uncover significant logical relationships that govern cellular network re-
sponses, such as those involved in the onset of oxidative stress-related phenotypic
responses that are important in many human diseases, through the integration
of genome-wide data sets.
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In this paper we investigate two problems of modelling responsive phenotypes
in yeast using ILP: protein expression under oxidative stress, and sensitivity of
gene deletion mutants to multiple stresses. The basic setting is described in
Section 2, initial results are in Section 3, and discussion in Section 4.

2 Learning the logic of responsive cellular networks

A responsive sub-network of a cell is referred to as the genetic regulatory net-
work (GRN) [5]. The protein products of co-expressed genes in a GRN combine
to form interacting molecular machines that produce a responsive cellular phe-
notype. This responsive sub-network is partly described by the protein-protein
interaction (PPI) network. In turn, proteins act to regulate cellular metabolism
in pathways of biochemical reactions and, by subtle feedback mechanisms, their
own GRNs and PPI networks.

We do not expect to be able to learn an entire cellular response network
from data on its behaviour. That would be pointless since, in some sense, it is
implicit in the empirical data on the GRNs and PPI networks, although this is
typically incomplete and incorrect. Instead, we aim to learn theories on network
components that may be predictive and explanatory of an observed cellular
response. These may be used, for example, in visualization or further learning.

We assume a logical language LNet to represent cellular networks, as follows.
In this paper we use as constants only gene symbols (genes represent proteins in
certain contexts). Function symbols are not currently used. Predicate symbols
express properties or relations, such as gene expression or protein interactions.
This is similar to representations used in previous work (e.g., [2, 14, 7]).

We assume a supervised learning framework, but adopt a simpler setting than
typical in ILP. The task of learning a logical network will be to discover a theory
T defined in LNet which is over-represented with respect to a data set E and
background knowledge B. We assume there is a function fE,B(T ) to evaluate
candidate theories, and that some threshold can be set by the biologist on this
function to decide if the network may be of interest, i.e., is over-represented. Note
that in the work reported here, theories are constructed by learning individual
clauses separately, and the evaluation is therefore applied per clause.

As an over-representation measure fE,B(C) to evaluate a clause C we used
the cumulative probability from the hypergeometric test [3] to obtain P -values:

P (r, s,m, n) = 1−
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i=0
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)(
n
s
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where n is the total number of genes, m is the number of genes in the positive
class, s is the number of genes covered by the clause and r is the number of
genes in the positive class covered by the clause. This does not apply correction
for multiple testing, which would reduce the P -values obtained [3]. However,
biologists are familiar with its usage, and apply conservative thresholds. It also
has the property of favouring higher-coverage clauses; given two clauses C1, C2

with equal accuracy, if C1 covers more examples, it will have a lower P -value.
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3 Experimental results

To develop and test our approach we selected two problems of learning ele-
ments of the cellular response network in yeast. The first was to learn a protein
expression network from integrated data sets. The second was a more typical
laboratory problem, where multiple stresses were applied to yeast cells which
were then screened for changes in growth.

3.1 Learning to predict an intra-cellular response phenotype

In this experiment proteomics and genomics data were integrated to learn to
predict protein expression in yeast in response to the environmental addition
of hydrogen peroxide (H2O2), a condition known to produce “oxidative stress”.
The response was taken from a proteomics experiment by Godon et al. [8]. There
were 56 proteins whose synthesis was stimulated and 36 that were repressed
under oxidative stress. As background knowledge, we took two independently
generated data sets.

Microarray data from the study by Causton et al. [4] was discretized from
time-courses into the values “up” or “down” for a number of conditions. Tran-
scription factor binding (ChIP-chip) data from the study by Harbison et al. [9]
provided a set of potential links between genomics and proteomics. Lastly, a set
of protein-protein interactions was downloaded from the BioGRID repository 3.
We used Aleph to learn clauses to predict whether genes in the Godon et al.
data had their protein expression induced or repressed. Since the majority of
genes in the positive class were not generalised the 10-fold cross-validation mean
accuracy (sample std. dev.) was 62.5(±17.7)%.

The set of ground instantiations of the learned theory was translated into
‘canned’ natural language and one of us (M.T.) manually assembled the network
diagram of Figure 1. In Figure 1 the horizontal bold line represents the intragenic
(promoter) region of the gene named on the left-hand side of the diagram. The
filled circle on each promoter links vertically (dotted line) to the transcribed
mRNA indicated by the right-pointing arrowhead — a bold vertical line indicates
that the transcript is up-regulated in the microarray data [4].

The circle around each arrowhead indicates the response to hydrogen per-
oxide — a grey filled circle indicates that the protein is induced [8]. Proteins
connected by a curved arrow indicate that a protein-protein interaction is in Bi-
oGRID. The downward pointing triangle represents a transcription factor (pro-
tein) bound to the gene promoter (DNA sequence). The identity of this factor
is indicated by the bold vertical line attached to the labelled circle below. The
condition under which the transcription factor is bound is indicated by the box
to the left of the labelled factor [9].

The clause (induced(A) :- h2o2(B,A), ppi(A,C), acid(D,C)) denotes
that a gene A has its protein induced under H2O2 addition since two transcrip-
tion factors, B and D, bind the promoter regions of the genes, A and C, and there
is a protein-protein interaction between A and C.
3 http://www.biogrid.org
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Fig. 1. A network that describes interactions between diverse heterogeneous data lead-
ing to protein induction or repression in response to H2O2 treatment.
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By way of example, in one of the instantiations of this clause, the gene Trx2
is bound by the transcription factor Msn2/Msn4 (and others as indicated in
Figure 1) under hydrogen peroxide treatment conditions, the Trx2 mRNA is
up regulated under similar treatment conditions and the protein itself is induced
upon peroxide treatment. In addition the Trx2 protein exhibits a protein-protein
interaction to Ahp1 (as shown in Figure 1). In turn, further learned clauses
describe the AHP1 gene’s relationships to others the network.

3.2 Learning to predict an extra-cellular multiple response
phenotype

The Saccharomyces Genome Deletion Project [15] is a set of yeast strains in each
of which exactly one gene from the genome has been systematically removed.
Biologists have carried out many “screens” of the deletant set — selecting a
subset of genes and subjecting each of the corresponding deletants to that stress
searching for a “sensitive” phenotype (e.g., abnormal growth) that would sug-
gest a role for the deleted gene in the cellular response to that stress. This is
known to present a hard problem in functional genomics, since there is very little
correlation of these screens to microarray data [13].

We assembled 26 screens on 1016 genes from various different laboratories.
Of these, 409 deletants were sensitive to three or more screens. These may have a
general role in cellular stress response, whereas the remaining 607 are impicated
in specific responses. The classification problem was then to learn to discrim-
inate these “general” response genes from those sensitive to only one or two
screens (since many stresses had two screens, this is roughly equivalent to being
sensitive to one stress). The background data was essentially the same as used
in Section 3.1. Although the screen data is known to be noisy, we have so far
found a number of clauses at a P -value below the standard cutoff of 0.01. Work
is continuing to evaluate their biological plausibility.

4 Discussion

Badea [2] was the first to learn theories of gene expression using ILP. Fröhler
and Kramer [7] included genomic and proteomic data in a similar task. These
approaches are learning to predict an intra-cellular “phenotype”. Trajkovski et
al. [14] applied ILP and propositionalization to learn an extra-cellular phenotype
(cancer type), also from integrated data sets. These approaches, as ours, depend
on intra-cellular measurement data. However, in our case, the extra-cellular phe-
notype is known to be more difficult to predict from such data [13].

We have shown elsewhere [1] that it is possible to obtain reasonable accuracy
on the tasks in this paper with propositional learning, given non-discretised
microarray data (task in Section 3.1) or Gene Ontology data (task in Section 3.2).
The key differences here are (1) that we are trying to learn a representation of
the underlying networks with ILP, and (2) we are using experimental data only.
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5 Conclusions

Reviewing progress [12] in the years since the sequencing of the yeast genome,
the role of “human inference and domain knowledge” in functional genomics was
emphasised. We believe our ILP approach to learning networks contributes to
this goal, providing a path from large multi-relational data sets to comprehen-
sible diagrams or other biologist-oriented applications of learned theories.

We note that it appears harder to learn to predict phenotype at the cellular
level (such as sensitivity to environmental stresses) than a quantitative intra-
cellular measure such as protein or gene expression. For further work we will
continue to investigate this difference.
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7. S. Fröhler and S. Kramer. Inductive logic programming for gene regulation pre-

diction. Machine Learning, 70:225–240, 2008.
8. Godon, C., Lagniel, G., Lee, J. et al. The H202 Stimulon in Saccharomyces cere-

visiae. Journal of Biological Chemistry, 273(34):22480–22489, 1998.
9. Harbison, C., Gordon, D., Lee, T. et al. Transcriptional regulatory code of a

eukaryotic genome. Nature, 431:99–104, 2004.
10. T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life: systems

biology. Ann. Review of Genomics and Human Genetics, 2:343–372, 2001.
11. L. Steinmetz et al. Nature Genetics, 31(4):400–404, 2002.
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