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Abstract. There exist large data in science and business. Existing ILP
systems cannot be applied effectively for data sets with 10000 data
points. In this paper, we consider a technique which can be used to
apply for more than 10000 data by simplifying it. Our approach is called
Approximative Generalisation and can compress several data points into
one example. In case that the original examples are mixture of positive
and negative examples, the resulting example is ascribed in probability
values representing proportion of positiveness. Our longer term aim is to
apply on large Chess endgame database to allow well controlled evalua-
tions of the technique. In this paper we start by choosing a simple game
of Noughts and Crosses and we apply mini-max backup algorithm to
obtain database of examples. These outcomes are compacted using our
approach and empirical results show this has advantage both in accu-
racy and speed. In further work we hope to apply the approach to large
database of both natural and artificial domains.

1 Introduction

There exist large data in science and business. Existing Inductive Logic Program-
ming (ILP) [2] systems cannot be applied effectively for data sets with 10000
data points. In this paper, we consider a technique which can be used to apply
for more than 10000 data by simplifying it. Our approach is called Approxima-
tive Generalisation and can compress several data points into one example. In
case that the original examples are mixture of positive and negative examples,
the resulting example is ascribed in probability values representing proportion
of positiveness. Our study characterise Probabilistic ILP [1] not only from an
uncertainty but also from a non-deterministic point of view.

In this paper, the new active learning framework is theoretically introduced
in Section 2 first. Then we emperically confirm the theoretical result in Noughts
and Crosses domain in Section 3. Brief discussions conclude this paper in Section
4.

2 Approximative Generalisation
We propose a new learning framework, called Approximative Generalisation, for

learning from specialised examples. Our proposal smoothly fits to the standard
entailment-based ILP framework.
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2.1 Entailment-based Specialisation

In a standard ILP setting [3], we search the set of hypotheses, H, which satisfies
the entailment relation:
BKUHEE (1)

where E is a set of given examples, and BK is background knowledge. Instead
of E, We consider a set of specialised examples, E', which is a specialisation of
E associated with BK under entailment as follows.

BKUEEE' 2)
Now E' satisfies the following relation.

Theorem 1. Let BK, H, E' be background knowledge, a set of hypotheses, and
a set of examples. If (1) and (2) are held, the following entailment relation is
also held.

BKUHEE

Proof. From (1), BKUH | BKUE. From (2), BKUE = E'is held. Therefore
BKUHEE'.

Theorem 1 shows that the original concept can still be learned with the
specialised examples. In this setting, we assume that the learner has domain
knowledge to design such a specialisations in BK. The learner may repeat Ap-
proximative Generalisation by designing several specialisations.

2.2 Numerically Approximating Examples by Surjection

In the previous subsection, we define the knowledge modifications in a standard
entailment relation as shown in (2). In order to transfer the associated Boolean
labels of positive or negative examples, we introduce a functional constraint for
the specialisation next. Let us consider a class of projections, surjective functions,
from E to E’ as follows.

Definition 1. A function f : E — E' is surjective if and only if its range f(E)

is equal to its codomain E'.
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Fig. 1. (1)Surjective and (2)non-surjective functions



Ezample 1. Figure (1) in Fig. 1 is a surjective function whereas a non-surjective
function is shown in Figure (2).

We request the logic-based specialisation, (2) , to satisfy the surjective feature.
Now non-deterministic example is defined as follows.

Definition 2 (Non-deterministic Examples). Let ET is a set of given pos-
itive ezamples and E~ a set of given negative examples. For E = ET UE~ and

a surjective function f, a non-deterministic example , 1 : f(e), is a labelled
example where | is defined as: | = ||f};E+(S)| where |fg+(€)| is a number of positive

|
examples surjected onto f(e) and |fg(e)| is a number of examples surjected onto
fle).

For example, in Fig. 1, if el and e2 are labelled as “positive example” and
“negative example” respectively, 0.5 : A is obtained. In ILP, probabilistic exam-
ples can capture such a degree of truth in probability. Further discussions on
Approximative Generalisation can be found in [4].

3 Example: Noughts and Crosses Domain

3.1 Generating Never-Lose Sequences of Plays

We show an empirical result of this new framework in Noughts and Crosses
Domain where our result shows a more relational representation requires less
number of examples. Noughts and crosses, also called Tic tac toe, is a two-
person, perfect information, and zero-sum game in which two players, nought
(O) and cross (X) take turns marking the space of a 3 x 3 grid. Nought goes first
and the player who succeeds in placing three respective marks in a horizontal,
vertical or diagonal row wins the game. Noughts and Crosses game is known
that there exist a never-lose strategy for each player [5]. That is, the game is
always draw if two players know the optimal strategy. However, it becomes a
probabilistic one once one side plays randomly. Let us assume that nought plays
in never-lose strategy whereas cross plays randomly. Under such a probabilistic
setting, we study (1) if a Machine Learning algorithm can obtain the never-lose
strategy by cloning the behaviour of nought and (2) how we can reduce the
number of examples by changing knowledge representations from propositional
one to relational one.

Before starting Machine Learning, we perform a retrograde analyse of Noughts
and Crosses game in order to generate never-lose sequences of plays. In two
player zero-sum game theory, mini-max is a rule which always selects a decision
to minimise the maximum possible loss. By “maximum possible loss” we mean
one players assumes the opponent always takes his best action which results
the maximum loss to the other side. Mini-max algorithm evaluates the game in
forward direction from the initial plays to the ends. In the Noughts and Crosses
case, let us assume Nought plays first. Mini-max rule suggests Cross to always se-
lect the play which maximises Nought’s loss whereas Nought to select the action
to minimise such a loss.



Unfortunately mini-max criteria cannot force a player to win, however, an
alternation of mini-max so called mini-maz backup algorithm [5] can do. It is
originally developed for retrograde analysis of chess endgames in which the al-
gorithm evaluate the player’s actions and board positions in backward direction
from the ends of the game to the initial plays. The key idea is that we only
starts from Nought-won end-positions of the game and generate only sequences
of predecessors which never reach to losing end positions. We apply this idea to
generate the database of all the never-lose sequences of plays.

3.2 Two Logical Representations

We study two logical representations of Noughts and Crosses game. A natural
way to express the 3x3 board is in the following atom: board(p0, p1, p2, p3, p4, p5, p6, p7, p8)
where the term p; is either 1, 2, or 0 to express nought, cross, and empty re-
spectively as shown in Figure 2. The atom, board(2,1,0,0,0,0,0,0,0), expresses

p0|p1|p2 X |0 2(11]0

p3|p4|p5 0|0]|0

p6|p7|p8 0|0]|0
board(p0,p1,p2,p3,p4.,p5,p6,p7.p8) board(2,1,0,0,0,0,0,0,0)

(a) (b) (c)

Fig. 2. Logical representation of a state of the 3 x 3 board. (a) shows the mappings
between the locations of the grids and arities of the atom. (b) is a state of the board
whose logical expression is shown in (c).

the state of the board (b) of Figure 2. Language £ is defined as: (a)Predicate:
board/9 and (b)Terms: 0,1,2. We also introduce a different relational language,
Lo. Figure 3 shows 6 relations in the board. The atoms, corner(mark,p;),

7 0 0

(a)face (b)corner (c)center (d)opposed (e)knight (f)knight (g)neighbor

Fig. 3. Relations between grids of the game board

face(mark, p;), and center(mark, p;) take the term “mark” (either 1 for nought
or 2 for cross) and p; (i = 0,...,8) to express the mark being placed at p;. The
atoms, opposed(pi,p;), knight(pi,p;), and neighbor(p;,p;) represent the rela-
tions between two grids, p; and p;. These relations are static and do not es-
sentially depend on the plays, however, we only describe them when any placed



mark has such relations. More precisely, the figures, (e), (f) and (g) in Figure 3,
show the relative grids from the placed noughts. If any mark is placed in the
shadowed grids, the associated relations are expressed. Language Ly is defined
as follows.

— Predicate: corner/2, face/2, center/2, opposed/2, knight/2, neighbor/2
— Terms: 17 27 Do, P1, P2, P3; P4, P5; D6, P7, P8,

For example, the board (b) in Figure 2 can be expressed in the conjunctions of
the form as corner(2,po) A face(1,p1) Aneighbor(pg,p1). Note that Lo expresses
all the marks of nought and cross on the 3 x 3 boards even after the specialisation
since the second arity of corner/2, face/2, and center /2 tells the grid locations
although £, cannot express the locations of the empty grid at all.

Logical specialisation from the representation in language £, to in language
L> can be expressed in a logic program. A part of such background knowledge
is as follows.

corner (X,p0) :- board(X,_,_,_,_,_,_,_,_), X != 0.
face(X,pl) := board(_,X,_,_,_,_>_>_,_), X '=0.
neighbor(X,Y) :- board(X,Y,_,_,_,_,_,_,_), X != 0.

3.3 Machine Learning of Noughts and Crosses Game

We study Machine Learning of Noughts and Crosses Game next. As a proba-
bilistic logic, we use Probabilistic Logic Automaton (PLA) [4]. Intuitively, PLA
is a logical extension of Probabilistic Automaton each of whose node can be an
interpretation of an existentially quantified conjunction of literals (ECOL).

We randomly sampled never-lose sequences of plays from the database and
expressed in PLA based on the language £1. Let us call this example in £; as
E; . Then the logical contents in each node in F; is specialised by a logic program
a part of which is shown in the previous section. This specialised examples are
called E,. Note that F; is a set of positive example whereas F» is a set of
non-deterministic examples with [ = 1.0.

We learn the Nought strategy both in £; and L, by Cellist system [4] which
provides (a) topology learning via Stirling Numbers of the second kind-based
topology sampling algorithm, (b) specialisation of ECOLs by adopting Plotkin’s
lgg algorithm [6], and (c) EM algorithm for estimating probabilistic parameters.

We tested 12 sample sizes, (5 , 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) for
the training examples. Regarding the empirical results, we evaluated predictive
accuracies of the generated PLA models using 100 Nought-won test examples.
For each number of sample sizes, we calculated the average error of the learned
models and plotted in those figures. The best model results 92.3% predictive
accuracy (0.077 error) when m = 55 in language L.

The results are shown in Figure 4 and Figure 5 in which how the error, ¢,
is decreased by increasing the number of non-deterministic examples. Clearly,
the knowledge representation in L2 shows better predictive accuracies for all the
sizes of training data.
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Fig. 4. Predictive Error Rates in £; Fig. 5. Predictive Error Rates in £,

4 Conclusion

In this paper, we present Approximative Generalisation to find easy-to-learn
knowledge representations formally in PILP. Our experimental result in Noughts
and Crosses domain shows a case that the more relational representation in lan-
guage Lo has lower sample complexity. This aspect should encourage PILP to
tackle more relational applications. A natural but interesting future direction of
Approximative Generalisation is about learning with huge data since the surjec-
tive function can compress the size of examples. Further discussion is required
to characterise PILP from a non-deterministic point of view since our approach
only captures the numerical aspect of non-determinicity.
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