Towards clausal discovery for stream mining

Anton Dries! and Luc De Raedt!

Department of Computer Science,
Katholieke Universiteit Leuven
{firstname.lastname}@cs.kuleuven.be

Abstract. With the increasing popularity of data streams it has become
time to adapt logical and relational learning techniques for dealing with
streams. In this note, we present our preliminary results on upgrading
the clausal discovery paradigm towards the mining of streams. In this
setting, there is a stream of interpretations and the goal is to learn a
clausal theory that is satisfied by these interpretations. Furthermore, in
data streams the interpretations can be read (and processed) only once.

1 Introduction

The data base and data mining community has devoted a lot of attention recently
to dealing with data streams. A data stream consists of a continuous, often high
speed, flow of data points that is so large that each data point can be processed
just once. Often these data streams are also susceptible to continuously evolving
underlying patterns [1]. Special purpose querying and mining techniques have
been developed to cope with such streams in the literature [2]. However, to the
best of the authors’ knowledge, such techniques have not yet been used in a
logical and relational learning setting and there are several interesting questions
that arise in this context: What is an appropriate formalization of stream mining
in a logical and relational learning setting? and if we have such a setting, can we
still develop efficient learning techniques? and for what purposes can this setting
be employed?

In this note, we provide an initial answer to these questions. More specifically,
we show that the learning from interpretations setting introduced by Valiant [3]
in the propositional case and upgraded by De Raedt and Dzeroski [4] for the
relational case, constitutes an appropriate setting for read-once stream mining.
Furthermore, we also show how the algorithms used in these PAC-learning re-
sults can be adapted for use in an incremental read-once setting. The resulting
algorithm computes a jk-clausal theory that is satisfied by all examples. While
the learning from interpretations setting has been quite popular in inductive
logic programming, cf. Claudien [5], Tertius [6], Logan-H [7], it is — to the best
of the authors’ knowledge — the first time that a read-once logical and rela-
tional learning algorithm is developed. The framework we present extends and
generalizes that of Dries et al. for the propositional case of mining mining k-
CNF theories from streams of item-sets [8]. Dries et al. have also shown that

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

the induced propositional theories can be used for a variety of purposes, such as
classification, missing value imputation and detection of concept drift [9].

2 A logical and relational stream mining definition

We shall assume that examples are (Herbrand) interpretations, that is, sets of
ground atoms. We shall induce clausal theories consisting of a set of (range-
restricted) clauses, where each clause is a formula of the form ¢: hy V...V hy, <
b1 A ... A by, where the h; and b; are logical atoms. We call the disjunction of
h;s the head of the clause and the conjunction of b;s the body of the clause!. An
example e satisfies or is covered by a clause ¢ : H <« B, notation: e |= ¢, if and
only if VO : BO € eV HO Ne # (). When there exists a substitution 6 such that
BO C e and HONe = () we say that the example violates the clause and call 6 a
violating substitution.

As a generality relation we shall employ the usual notion of #-subsumption.
Basically, a clause s 6-subsumes a clause g, notation s < g, if and only if there
exists a substitution # such that s# C g. In the learning from interpretations
setting, the direction of generality is reversed as compared to the learning from
entailment setting, cf. [10]. Therefore, the §-subsumption is also monotonic, that
is, if a clause s is satisfied by an example e, and s =X ¢ then e will also satisfy
g. This property will be important for the stream mining setting, because once
an example is covered by a clause, it is guaranteed that all refinements under -
subsumption (applying substitutions or adding literals to the head or the body)
will also cover the example, and hence, the example can be forgotten.

Systems such as Claudien [5] and Tertius [6] now start from a given set of
examples F, a language of clauses £ and compute the theory

T={cellFEcandVse L:s<c— E} s}

This theory only computes the maximally specific clauses covering the examples,
as the others ones are entailed by 7, and, hence, logically redundant. Claudien
and Tertius compute — in a way — 7 and realize this by treating the examples
in batch using top-down search. However, this does not satisfy the read-once
requirement of stream mining. We therefore propose to compute 7 incrementally
and requiring that each example is read just once. This leads to the following
problem that has to be tackled once for each example:

Given:

— a language of clauses £ with language bias
— a theory of clauses 7,1 C L
— an interpretation e

Find 7, ={ceT,_1lef=c}U
{9e€L|Fs€T_1:elftsand s < gand e | g and
-39 €eL:s<g <g:eEg'}

L' A clause is range-restricted if all variables appearing in the head of the clause also
appear in its body.

It should be clear that the final theory that is computed in this way coincides
with the theory that is computed directly, that is, by processing the examples
in batch.

The problem setting can also easily be extended to take into account back-
ground knowledge in the usual way when learning from interpretations. It cor-
responds to employing a definite clause theory and computing for each example
the least Herband model of the background theory and the set of facts describing
the clauses, cf. [10, 5].

This setting is also natural for dealing with streams, because in many ap-
plications such as robotics and video analysis every state can be described in a
natural way by an interpretation and over time streams of such interpretations
would be generated. Although it remains an open question, it seems harder to
adapt the usual notion of learning from entailment to mining streams because
that setting assumes information about the examples resides in the background
theory and has — mainly — been focussing on heuristic classification and not on
description.

Finally, as shown for the propositional case by Dries et al. [8], the setting
above can be used for classification and for missing information imputation. For
example, when confronted with an unlabeled example a score is calculated for
each possible class label. This score is based on the number of clauses that are
violated by the example and the class label. The optimal class label is then
chosen as the one with the best score, i.e., the one that violate the least amount
of clauses. Because the learning algorithm does not make a distinction between a
class attribute and any other attribute, the same method can be used to predict
an arbitrary number of missing values. In the first-order case these missing value
problems correspond to finding suitable completions for partial interpretations,
or in other word, what information do we need to add to an interpretation to
make it satisfy the current theory?

3 Algorithm

The algorithm that we introduce is based on the candidate-elimination algorithm
of Mitchell [11], which computes border-sets of hypothesis consistent with the
data. The set 7 that we compute can be considered the border of maximally
specific clauses consistent with the examples. The resulting algorithm is shown
below. The initial theory contains the maximally specific clause, that is, the
empty one, which is not satisfied by any example.

For each example in the stream of examples, we then repeat the following
three steps: find clauses in 7, that are not satisfied by the current example,
refine these clauses, and possibly compress the resulting theory to remove those
clauses that are not maximally specific, and, hence, logically redundant. Because
the first step and third step are straight-forward, we focus on the second step.

The most interesting step is that of applying the refinement operator p(c, e)
to generate refinements of the clause ¢ with respect to e, that is, p(c, e) = {c'|c <
dande |E ¢ and not 3d : ¢ < d < ¢/, e |E d}. This corresponds to computing
the minimally general generalizations ¢’ of ¢ such that e = ¢'.

To = {0}
for e, € £ do
for c € 7,-1 do
if e, = c then
add c to 7,,
else
add all ¢’ € p(c,e,) to 7,
end
end
compress (7,)
end
Algorithm 1: incremental clausal discovery algorithm

As usual in logical and relational learning, the refinement operator is governed
by a language bias that defines which literals can be added to the head and
which literals can be added to the body of the clause, and that also specifies
mode restrictions on the variables in the new literals. These mode restrictions
specify whether a literal can use constants, existing variables, or whether it can
introduce new variables. The refinement operator generates a complete set of
refinements within the restrictions set out by the bias.

Because there are typically many possible refinements of a clause, we want
to minimize the number of generated refined clauses by eliminating redundant
ones already during the refinement phase. Here, the read-once property comes in
handy because the refined clause should only add those literals that are necessary
for the current example. To this aim, we employ the set of substitutions O that
violate the clause.

Refinements come in two flavors. On one hand we have literals that only
use variables that are already part of the clause. Finding a minimal set of such
literals is equivalent to solving a set covering problem where the chosen literals
should form a minimal set that covers all violating substitutions. We do this
by first listing the possible literals that can be added to the clause and the
violating substitutions they resolve. This gives us a set of the following form
{ll : [91, 92, (93}, 12 : [93, 94], l3 : [91, 92, 95], l4 : [91, 92, 93, 05]}, which indicates
that, for example, [; resolves substitutions 61, 65, and 3. From this we find all
minimal sets of literals that cover all substitutions. In this case {ls, I3} and {la,
l4} are the only such sets, and {l1,l2,13} is not because l; is redundant.

On the other hand we have literals that add new variables to the clause.
Avoiding redundancy for these literals is harder, because they cause dependencies
between the new literals. For example, it would only be possible to add a literal
that uses variable X to the head of a clause if a literal creating variable X
is already added to the body of the clause. However, it is is still possible to
reduce the number of redundant refinements by taking into account the violating
substitutions of the clause for the current example. For example, we want to avoid
adding a literal to the clause that covers the same substitutions as another new
literal already added to the clause. By keeping track of which new literals cover

which violating substitutions we can avoid this type of redundancy. This method
is similar to the set covering approach but with the added complexity of keeping
track of the newly introduced variables.

4 Experiments

We implemented a preliminary version of our algorithm in SWI-Prolog and ran
it on the poker dataset to examine its behavior and performance. This dataset
was introduced by Blockeel et al. [12] and contains a collection of descriptions
of poker hands and their classification. We used a dataset containing 10.000
interpretations of the form, where R; and .S; indicate rank and suit respectively

{card(Ry,S1), card(Ra, S2), card(Rs, S3), card(R4, S4), card(Rs, Ss), class(C) }.

This dataset contains seven classes: nothing, pair, double pair, full house, three
of a kind, flush, and poker.

Rule learning behavior First we ran our algorithm directly on this dataset with-
out any additional background knowledge or length restriction on the learned
clauses. Processing the entire dataset took approximately 40 minutes and pro-
duced 736 rules. Interestingly, only 25 examples contributed to the theory; the
other 9.975 examples did no violated any clauses. Running the algorithm on the
reduced dataset containing only these 25 examples took 4 minutes and produced
the same final theory.

For the second run, we defined two background predicates: same__rank and
same __suit that count the number of cards of the same rank and suit respectively.

same_rank(2, R) < card(R,A) A card(R,B) N A # B

We modified our language bias to use these new predicates instead of the card
atom. Running the algorithm with this setting took 80 seconds and produced 53
rules. In this case, only 11 examples were responsible for the entire theory. Inter-
estingly, three of the classes (full house, flush and poker) were only represented
by a single example in this reduced dataset.

Classification and completion of partial interpretations We also ran some exper-
iments to see whether the classification and imputation results from [8] also hold
for the first-order case. For this experiment we randomly generated two sets of
100 poker hands, where we made sure that each class was represented in both
datasets. We trained a single theory (without background knowledge) on the
first set and evaluated this theory on the second set.

First we used the standard classification setting, where we removed the class
label from the examples in the test set. We then assigned a score for each class
label based on the number of clauses violated by the example extended with this
class label. For most examples, assigning the correct class label did not violate
any clauses, while assigning other class labels did. We repeated this experiment
five times on different random datasets, producing an overall accuracy of 97.8%.

We also used our algorithm to complete a partial poker hand of four cards
and a class label. We used the same theories learned in the previous setting and
applied the same scoring mechanism. In this setting, multiple alternatives where
predicted for each example. For example, when given the partial interpretation

[card(2, clubs), card(9, diamonds), card(9, spades), card(2, hearts), class(full _house)]
the system would output

[card(9, hearts), card(9, clubs), card(2, spades), card(2, diamonds)]

as possible fifth cards. In all cases the original card was among those predicted.

5 Conclusions and future work

We introduced — for the first time — a framework for stream mining in the setting
of logical and relational learning. Our approach upgrades the setting of clausal
discovery in interpretations, as used by earlier systems such as Claudien [5], Ter-
tius [6], and Logan-H [7], towards mining of streams. We proposed an algorithm
based on the Candidate Elimination algorithm of Mitchell [11], and applied it
to the problems of classification and completion of partial interpretations.
Future work in this area includes (1) a further optimization and implemen-
tation of our algorithm, (2) a thorough experimental verification of our prelim-
inary results and a comparison with other ILP systems, and (3) application of
the framework to other stream mining problems such as concept drift detection.

References

1. Aggarwal, C.C.: Data streams: models and algorithms. Springer New York (2007)
2. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining data streams: a review.
SIGMOD Record 34(2) (2005) 18-26
3. Valiant, L.G.: A theory of the learnable. Communications of the ACM 27(11)
(November 1984) 1134-1142
4. De Raedt, L., Dzeroski, S.: First order jk-clausal theories are PAC-learnable. Ar-
tificial Intelligence 70(1-2) (October 1994) 375-392
5. De Raedt, L., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3) (1997)
99-146
6. Flach, P.A., Lachiche, N.: Confirmation-guided discovery of first-order rules with
Tertius. Machine Learning 42(1-2) (2001) 61-95
7. Arias, M., Khardon, R., Maloberti, J.: Learning horn expressions with LOGAN-H.
Journal of Machine Learning Research 8 (2007) 549-587
8. Dries, A., Nijssen, S., De Raedt, L.: Mining k-CNF expressions. (submitted)
9. Dries, A., Riickert, U.: Adaptive concept drift detection. In: STAM International
Conference on Data Mining, STAM (May 2009) 233244
10. De Raedt, L.: Logical and Relational Learning. Springer-Verlag (2008)
11. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
12. Blockeel, H., De Raedt, L., Jacobs, N., Demoen, B.: Scaling up inductive logic
programming by learning from interpretations. Technical report, Katholieke Uni-
versiteit Leuven (2000)

