
Higher-order Logic Learning

Niels Pahlavi and Stephen Muggleton

Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{namdp05,shm}@doc.ic.ac.uk

Abstract. This paper presents Higher-order Logic Learning (HOLL),
which consists of generalizing logic-based Machine Learning, and more
particularly Inductive Logic Programming (ILP), from the first-order
to the higher-order context. The power of expressivity of Higher-order
Logic (HOL) is used to improve significantly the learning capacity and
efficiency of logic-based Machine Learning – by both allowing to learn
new tasks but also to perform better than first-order Machine Learning
systems on some already learnable problems. We describe a Higher-order
ILP system, called λProgol, adapting the ILP system Progol and based
on the HOL formalism λProlog, along with its first implementation and
promising results on motivating worked examples. We intend to extend
the implementation, tests and evaluation of λProgol further, and to de-
velop a theory of HOLL.

1 Introduction

Much of logic-based Machine Learning research is based on First-order Logic
(FOL) and Prolog, including Inductive Logic Programming (ILP). Yet, Higher-
order Logic (HOL), which allows for quantification over predicates and functions,
is intrinsically more expressive than FOL and has been seldom used. According
to [6], “the logic programming community needs to make greater use of the
power of higher-order features and the related type systems. Furthermore, HOL
has generally been under-exploited as a knowledge representation language”. In
[6], the use of HOL in Computational Logic, which has been “advocated for at
least the last 30 years” is illustrated: functional languages, like Haskell98 [5];
Higher-order programming introduced with λProlog [8]; integrated functional
logic programming languages like Curry or Escher; or the higher-order logic
interactive theorem proving environment “HOL”.

As we were interested in discovering learning problems for ILP, we decided
to try to adapt ILP within a HOL framework, to develop Higher-order Logic
Learning (HOLL). ILP seems to be rather intuitively adaptable to a FOL for-
malism. It is natural when considering HOLL to both develop a theory and to
implement a higher-order ILP system and to test and evaluate it. We decided to
choose Higher-order Horn Clauses (HOHC) [10] as a HOL formalism, since it is
one of the logical foundations of λProlog. As a ILP system, we chose to adapt
Progol [9], which is a popular and efficient implementation.

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



H0LL will be tested and assessed on new problems and applications not learn-
able by ILP (which includes the learning of higher-order predicates), but also on
how well it performs on problems already handled by ILP to compare it with ex-
isting ILP systems. It would be therefore of interest to look at learning problems
not handled well by ILP. One of these is learning tasks involving recursion. Ac-
cording to [7], “learning first-order recursive theories is a difficult learning task”
in a normal ILP setting. However, we can expect a higher-order system to learn
better than a first-order system on such problems, because we could use higher-
order predicates as background knowledge to learn recursive theories (a similar
approach is already used for some recursive functions in the Haskell prelude [5]);
and it will be sounder, more natural and intuitive, hence probably more efficient
than meta-logical features which come from functional languages. More gener-
ally, the expressivity of HOL would make it possible to represent mathematical
properties like transitivity or reflexivity, which would allow to handle equational
reasoning and functions within a logic-based framework.

2 λ-Prolog and Higher-order Horn Clauses

λProlog is a higher-order logic programming language handling polymorphic
typing, scoping over names and procedures, modular programming, abstract
data types, the use of lambda terms as data structures and, more importantly
for this paper, higher-order programming illustrated by the predicates mappred,
trans and foreach in Exs. 1 and 2.

It is based on HOHC, which are “a generalization of Horn clauses to a higher-
order logic” and a “basis for logic programming”. According to [10], HOHC can
be “characterized as those obtained from first-order goal formulas and definite
sentences by supplanting first-order terms with the terms of a typed λ-calculus
and by permitting quantification over function and predicate symbols”.

In [10], a theorem proving procedure for HOHC is outlined and its soundness
is proved; this result is essential for λProgol allowing to implement a HOL Prolog
interpreter (see Sect. 3). This is based on Huet’s semi-decision algorithm to
search for unification in typed λ-calculus [4].

3 λProgol: a Higher-order ILP System

In this section, λProgol, a higher-order ILP formalism is presented. It is based
upon Progol and Mode-Directed Inverse Entailment as defined in [9]. However,
it generalizes this approach on HOHC and λProlog. Since our implementation is
in Prolog, a λProlog interpreter in Prolog is needed. The main differences in the
λProgol algorithm, compared to Progol, come from this interpreter and from the
fact that it requires background knowledge and examples to be not Horn clauses
but λProlog clauses.

Definition 1. λProlog Interpreter. A λProlog clause is of the form (HeadAtom ⇐
[BodyAtom1, . . . , BodyAtomn]), where HeadAtom has to be rigid. A λProlog for-
mula is : (1) A variable or a constant, (2) (X/F), where F is a formula, (3)



(F1@F2) where F1 and F2 are formulae, (4) (sigma F), where F is a formula,
(5) (pi F), where F is a formula. sigma and pi represent respectively the existen-
tial and universal quantifiers. / represents abstraction and @ represents function
in λ-calculus. A list is of the form cons@el1@ . . . @elm@nil. nil is the empty list.

Ex. 1 shows a λProgol input file to learn the higher-order predicate mappred,
defined in [8], which “given a predicate of two arguments and two lists, checks
that corresponding elements of these two lists are related by the given predicate”,
along with its bottom clause and clause learned by λProgol.

Example 1. Mappred.
modeh(*,mappred@+pred@+list@+list). modeb(*,+list=cons@-any@-list).
modeb(*,+pred@+any@+any). modeb(*,#pred@+pred@+list@+list).
Type declarations:
list(nil). list(cons@X@Y) :- list(Y).
any(X) :- person(X). any(X) :- integer(X).
pred(mappred). pred(age). person(bob). person(sue). person(ned).
Background Knowledge:
age@bob@23 <= []. age@sue@24 <= []. age@ned@23 <= [].
mappred@P@nil@nil <= [].
Positive Example:
mappred@age@(cons@ned@nil)@(cons@23@nil) <= [].
Result: Bottom Clause generated:
mappred@A@B@C<=[B=cons@D@E,C=cons@F@E,A@D@F,mappred@A@E@E].
Clause to be learned
mappred@A@B@C<=[B=cons@D@E,C=cons@F@G,A@D@F,mappred@A@E@G].

The following algorithms (Algs. 1, 2 and 3) which constitute the λProgol
algorithm are very similar to the Progol algorithms. The mode declarations and
mode language are identical to Progol (Definitions 20, 21, 22 in [9]) except that
the mode atoms can be different because λProlog atoms are different from FOL
atoms, as it can be seen in Ex. 1. The construction of ⊥i, which is the least
general element of the bounded sub-lattice for each example e is described in
Alg. 1. i represents the maximum variable depth determining how many times
step 5 is executed; Recall determines how many times the λProlog interpreter
is called for each instantiation of the clause in step 4. The line 5.a.i in the
algorithm is specific to λProgol, it is to prevent the call of flexible atoms by the
λProlog interpreter. Indeed, the type pred is set to correspond to higher-order
predicate, which can be uninstantiated (i.e. still variable) when called by the
λProlog interpreter. The call to pred(u) instantiates these variables.

Algorithm 1. Construction of⊥i.

1. Given natural numbers i, λProlog clauses B, λProlog clause e and set of mode
declarations M .

2. Let k = 0, hash : Terms → N be a hash function which uniquely maps terms to
natural numbers, e be a ∧ b1 ∧ . . . ∧ bn, ⊥i = 〈〉 and InTerms = ∅.

3. If there is no modeh in M such that a(m) ¹ a then return the empty clause ¤.
Otherwise let m be the first modeh declaration in M such that m subsumes a with
substitution θh. For each v/t in θh



(a) if v corresponds to a #type then replace v in m by t
(b) otherwise replace v in m by vk where k = hash(t) and
(c) add t to InTerms if v corresponds to +type.

Add m to ⊥i.
4. If k = i return ⊥i else k = k + 1.
5. For each modeb m in M , let {v1, . . . , vn} be the variables of +type in m and

T (m) = T1× . . .×Tn be a set of n-tuples of terms such that each Ti corresponds to
the set of all terms from InTerms of the type associated with vi in m (t is tested
to be of a particular type by calling type(t) with the λProlog interpreter).

(a) For each 〈t1, . . . , tn〉 in T (m) and θ = {v1/t1, . . . , vn/tn}. Repeat recall times:

i. for every variable u in mθ of type pred, add the call pred(u) to the λProlog
interpreter

ii. if the λProlog interpreter succeeds on goal mθ with answer substitution
θ′then for each v/t in θ and θ′ if v corresponds to a #type then replace v
in m by t otherwise replace v in m by vk where k = hash(t) and add t to
InTerms if v corresponds to −type. Add m to ⊥i.

6. Goto step 4.

The search for a single clause in the subsumption lattice is described in Alg. 2.
best(s), prunes(s), terminated(s),ρ(s) are defined like in Progol to find a clause
with maximal compression but other types of searches can be used like the search
used in Aleph which is simpler.

Algorithm 2. Algorithm for searching ¤ ¹ C ¹ ⊥i.

1. Given λProlog clauses B, λProlog clause e, and ⊥i obtained in Alg. 1.
2. Let Open = {〈¤, ∅, 1〉} and Closed = ∅.
3. Let s = best(Open) and Open = Open− {s}.
4. Let Closed = Closed ∪ {s}.
5. If prune(s) goto 7.
6. Let Open = (Open ∪ ρ(s))− Closed.
7. If terminated(Closed, Open) then return best(Closed).
8. If Open = ∅ then print “no compression” and return 〈e, ∅, 1〉.
9. Goto 3.

Alg. 3 is a simple cover set algorithm similar to Alg. 44 in [9].

4 Results and Implementation

An implementation of λProgol has been made and is available. It has been tested
successfully for Alg. 1 on several cases of learning higher-order predicates [8] as
well as cases of learning first-order recursive theories with higher-order predicates
as background knowledge, including Exs. 1,2,3,4 and 5. Table 1 gives a table of
runtimes for learning the bottom clause for these examples.

Our first choice of implementation was based on λProlog but revealed to be
too inconvenient and inefficient to use; instead the current implementation is in
Prolog, which is more convenient and more efficient; a requirement is the use of
a λProlog interpreter, which was implemented using a depth-first approach.



Ex. 2 details a practical example [7] showing the advantage of using HOL
background knowledge in a simple learning problem involving recursion. It con-
sists of learning the predicate ancestor given the predicate parent and the higher-
order predicate trans, which “given a predicate of two arguments, constructs its
transitive closure”.

Example 2. Ancestor.
modeh(*,ancestor@+person@+person).
modeb(*,#@#pred@+person@+person).
Type declarations:
pred(trans). pred(parent). pred(married). pred(brother).
person(john). person(jim). person(jane). person(bob). person(james). person(bill).
Background Knowledge:
trans@R@X@Y <= [R@X@Y]. trans@R@X@Z <= [R@X@Y,trans@R@Y@Z].
parent@john@jim <= []. parent@john@jane <= []. parent@jim@bob <= [].
parent@bob@james <= []. married@john@jane <= []. brother@bob@bill <= [].
Positive Examples:
ancestor@john@bob <= []. ancestor@jim@james <= [].

In this example, both the bottom clause and the clause to be learned are:
ancestor@X@Y ⇐ [trans@parent@X@Y].
By closed world assumption, we can infer the equivalence and by unfolding.
ancestor@X@Y ⇐ [parent@X@Y].
ancestor@X@Y ⇐ [parent@X@Z, trans@parent@Z@Y].
Which gives the following first-order theory (with Prolog notations).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
This shows how natural and efficient it is to use HOL as background knowl-

edge to handle the learning of a first-order recursive theory.

Table 1. Bottom Clause Results

Example Predicate Number of Number of Clauses Length of Time (sec)
Mode Declarations of Background Bottom Clause

1 mappred 4 13 5 0.004

2 ancestor 2 18 2 0.016

3 less than 2 18 2 0.024

4 foreach 4 18 4 0.008

5 trans 3 21 3 0.004

Ex. 3 also uses trans and successor, which given an integer N returns N+1 as
background knowledge to learn less than, which given two integers determines
if the first one is smaller than the second one. Ex. 4 learns the higher-order
predicate foreach, [8], which “given a predicate of one argument and a list,
checks that every element of that list satisfies that predicate”. In Ex. 5, trans is
not used as background knowledge but is the predicate to be learned.



5 Conclusion

There have been attempts to use HOL for logic-based Machine Learning such as
by Harao starting in [3] or by Feng and Muggleton [1]. They provide different
higher-order extensions of least general generalization in order to handle higher-
order terms in a normal ILP setting, whereas we use λProlog, a HOL framework,
as a logical foundation to extend first-order ILP to a higher-order context. John
Lloyd deals with related issues [6]. It details a learning system, called ALKEMY .
A main difference is that Lloyd’s approach is not based on Logic Programming
and therefore on ILP. According to Flach’s review of the book [2], “it is almost
a rational reconstruction of what ILP could have been, had it used Escher-style
higher-order logic rather than Prolog”; whereas we intend, through the use of
HOHC to keep the Horn clauses foundations of LP and ILP and to extend them.

We intend to present theoretical results for HOLL. ILP theory seems to
be rather intuitively adaptable within a HOL framework. For λProgol, we will
have to prove that higher-order inverse entailment is possible and to generalize
correctness and complexity results for the Progol Bottom Clause and Search
algorithms. In [11], a model-theoretic semantics for HOHC is provided. We will
also extend the implementation of λProgol and test and evaluate it further.

We also aim to compare λProgol with already existing ILP systems, for ex-
ample by considering learning tasks where it could perform better than Progol.
Then, we intend to investigate tasks and discoveries not learnable by first-order
ILP. It could be of interest to look at recursion, of course, but also at HOL
theorem provers, or integrated functional logic programming languages. Further
objectives may be to investigate abduction, introduce Probability, generalize
Probabilistic Logic Learning, look at applications such as Atomic Theory, Syn-
thetic Biology or Bioinformatics, where ILP has been successfully applied and
consider other logics within λProlog.

References

1. C. Feng and S.H. Muggleton. Towards inductive generalisation in higher order
logic. In Proc. Ninth Int. Work. on Machine Learning, pages 154–162, 1992.

2. P. Flach. Book review: Logic for Learning. Available at
http://www.cs.kuleuven.ac.be/ dtai/projects/alp/tplp/reviews/files/, 2003.

3. M. Harao. Analogical reasoning based on higher-order unification. In ALT, pages
151–163, 1990.

4. G. Huet. A unification algorithm for typed λcalculus. Theor. Comp. Sci., 1975.
5. S. Peyton Jones and J. Hughes. Haskell98: A non-strict purely functional language.

Available at http://haskell.org/.
6. J.W. Lloyd. Logic for Learning. Springer, Berlin, 2003.
7. D. Malerba. Learning recursive theories in the normal ILP setting. Fundam.

Inform., 57(1):39–77, 2003.
8. Dale Miller. λProlog: An Introduction to the Language and its Logic. 1998.
9. S.H. Muggleton. Inverse entailment and Progol. New Generation Computing,

13:245–286, 1995.
10. G. Nadathur and D. Miller. Higher-order Horn Clauses. Journal of the ACM, 1990.
11. D. A. Wolfram. A semantics for λProlog. Theor. Comp. Sci., pages 277–289, 1994.


