
Virtual Joins With Nonexistent Links

Hassan Khosravi, Oliver Schulte?, and Bahareh Bina

Simon Fraser University
School of Computing Science

Burnaby, B.C. V5A 1S6
Canada

{hkhosrav,oschulte,bba18}@cs.sfu.ca

Abstract. Many approaches to multi-relational learning require the computation
of database frequencies in the presence of nonexistent links. The corresponding
ILP problem is to compute the number of groundings that satisfy a given con-
junction of literals in a relational database, where one or more of the literals is
negated. We present a fast new dynamic programming algorithm for this prob-
lem. The database table joins performed by our algorithm are restricted to joins
of tables already existing in the database. Evaluation on three data sets confirms
the efficiency of our algorithm; computing frequencies for negated literals added
about 15% to the cost of computing frequencies for positive literals only.

1 Introduction
A basic task in algorithmic learning is to compute the frequencies with which various
events occur in the data; for example, maximum likelihood estimation of model pa-
rameters requires finding the data frequencies. The corresponding problem for ILP rule
learning is to compute the frequency with which a conjunction of literals holds in a
database (interpretation). The key step is to determine the number of groundings (sub-
stitution of variables by constants) for which the conjunction is true in a database. For
instance, the frequency of the conjunction Male(X),Female(Y),Friend(X,Y) re-
quires computing the number of constant pairs (a, b) such that the database entails that
a is a male friend of female b. In this paper we present an efficient algorithm for com-
puting database frequencies that involve negative literals (e.g., NOT Friend(X,Y)). In
typical databases relationship tables are sparse (e.g., fewer tuples satisfy Friend(X,Y)
than NOTFriend(X,Y)), so the number of groundings for a positive literal is much
smaller than the number for its negation. The key point of our algorithm is to avoid
explicitly enumerating the satisfying groundings for a negative literal. Instead, it de-
rives the number of satisfying groundings from the positive literal case using the laws
of probability. The algorithm can be applied as a subroutine with any ILP system whose
rule language allows negated literals (e.g., FOIL [6]). For systems whose rule language
allows positive literals only, it is often natural to consider an extension with negative
literals; our algorithm addresses a computational obstacle for such extensions.

Another application area is multi-relational data mining and statistical-relational
learning (SRL). A relationship table in the database corresponds to a positive literal
with more than two variables corresponds to a relationship table in the database. A join
of tables corresponds to a conjunction of positive literals. The complement of a database
table (i.e., the tuples that are not contained in a table) corresponds to a negative literal.

? This work was supported by a Discovery Grant to Schulte from the Natural Sciences and
Engineering Council of Canada (NSERC).

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).

2 Virtual Joins With Nonexistent Links

In database terminology, our algorithm computes the size of a join that involves the
complements of tables. Our algorithm is a type of virtual join that computes the join
size without actually materializing the complemented tables. The main SRL application
is to determine database frequencies that involve the absence of a relationship link. This
is important for many recent SRL systems that model uncertainty about the existence of
links [2, 4, 1]. The frequency with which a condition holds in a database can be found
from the join size corresponding to the condition.
Related Work [2, Sec.5.8.4.2] considered the problem of computing data frequen-
cies conditional on the absence of a single relationship from frequencies conditional
on its presence. Our dynamic programming algorithm extends the single-table solution
to multiple tables with link chains that may involve both present or absent links. [1,
Prop.12.4] proves that the problem of computing the number of groundings of an arbi-
trary first-order clause is #P-complete. The worst-case performance of our virtual join
algorithm is exponential in the number of variables in the conjunction. If the number
of variables is treated as a constant, our algorithm runs in polynomial time. The algo-
rithm benefits from the fact that the number of variables that a learning algorithm would
consider in practice is linear in the number of relationship predicates (tables). In data
mining research, the most closely related problem is sometimes referred to as “virtual
join”: computing frequencies in a table join without materializing the join [7, 8]. Virtual
joins have so far been considered for chains of existing relationships only.
Contributions A dynamic programming algorithm is described for computing the
number of database frequencies of literal conjunctions that may involve both positive
and negative literals. The number of satisfying groundings of such conjunctions can be
computed from the database frequency. Using the laws of probability, the algorithm in-
fers frequencies for negative literals with two variables or more from frequencies for the
corresponding positive literals; it never enumerates groundings for negative literals. In
our experiments, the computational overhead was only about 15% compared to restrict-
ing conjunctions to positive relationship literals (standard table joins) only. The datasets
discussed are available for ftp download from ftp://ftp.fas.sfu.ca/pub/cs/oschulte, and
our code is available upon request.
Paper Organization We define the relational logical vocabulary to which our algo-
rithm applies (conjunctions of literals with variable types). Then, we lay out the design
of the virtual join algorithm and give pseudocode. We give a complexity analysis and
discuss the cases where the algorithm is efficient. Empirical results on three data sets
show very good performance compared to SQL-based approaches that directly count
the number of satisfying groundings for negative literals.
2 Notation and Problem Definition
We consider conjunctions of first-order literals with typed variables; Table 1 shows the
logical vocabulary. Our algorithm can easily be extended to a language with function
symbols. Several ILP systems include type constraints (e.g. [5]). Type constraints also
serve to represent integrity constraints of databases, such as foreign key constraints.
They are important for determining the number of groundings of a formula because vari-
ables of a given type must take values in the domain of the type. Let a list T1, T2, . . . of
types be given. Each variable X is assigned a type T , which we denote by XT . A term
θ is a constant or a variable; the notation θ denotes a vector or list of terms. An atom is
a formula of the form P (θ), where θ is of the right arity for P . A literal L is an atom
(positive literal) or the negation of an atom (negative literal). The formulas we consider
are conjunctions of literals, or for short just conjunctions. We use the Prolog-style no-
tationL1, . . . , Ln forL1∧· · ·∧Ln, and vector notation L,C for conjunctions of literals.

Virtual Joins With Nonexistent Links 3

Description Notation Examples
Connectives ∧,¬
Constants a1, a2, . . . jack , 101, A, B, 1, 2
Predicate Symbols P, R and variants Student ,Course,Registered
Variables X1, X2, . . . S1, S2, C1, C2

Table 1. Definition of Logical Vocabulary. The examples refer to a university database with two
entity tables Student and Course , and a relationship Registered linking them.

A literal is ground if it contains no variables. A relationship literal is one with two or
more variables. We assume that a ground literal L is either true or false in a database
instance (interpretation) D; we write D |= L if L is true in D, and D 6|= L otherwise.
A database instance D assigns a domain of constants to each type T , which we denote
as domD(T). The domain of a variable XT of type T is the same, so domD(XT) =
domD(T). A table join of two or more tables contains the rows in the Cartesian prod-
ucts of the tables whose values match on common fields. A grounding γ for a set
of variables X1, . . . , Xk assigns a constant of the right type to each variable Xi (i.e.,
γ(Xi) ∈ domD(Xi)). If γ is a grounding for all variables that occur in a conjunction C,
we write γC for the result of replacing each occurrence of a variableX in C by the con-
stant γ(X). The number of groundings that satisfy a conjunction C in D is defined as

|C|D = |{γ : D |= γC}|
where γ is any grounding for the variables in C. Approaches that combine probabilistic
concepts with logic (e.g., [6]) often employ a natural probability assignment for con-
junctions of literals defined by

PD(C) =
|C|D

|domD(X1)| × · · · × |domD(Xk)| (1)

where X1, . . . , Xk, k > 0, is the set of variables that occur in C. This probability
is the ratio of the number of groundings that satisfy a formula in a database over the
number of groundings that are possible given the type constraints. In the next section
we present an algorithm for computing the quantity PD(C) when a database instance
D and a conjunction of literals C is given as input. The number of groundings of a
conjunction can be computed from the probability of the conjunction. Alternatively,
our algorithm can be used to compute the number of groundings directly by simply
replacing PD(C) with |C|D in the algorithm.

3 The Virtual Join Algorithm
The key constraint that our algorithm seeks to satisfy is to avoid enumerating the
number of tuples that satisfy a negative relationship literal. A numerical example il-
lustrates why this is necessary. Consider a university database with 20,000 Students,
1,000 Courses and 2,000 TAs. If each student is registered in 10 courses, the size of a
Registered table is 200,000, or in our notation |Registered(S,C)|D = 2× 105. So the
number of complementary student-course pairs is |¬Registered |D = 2×107−2×105,
which is a much larger number that is too big for most database systems. If we con-
sider joins, complemented tables are even more difficult to deal with: suppose that each
course has at most 3 TAs. Then |Registered(S,C),TA(T,C)|D < 6 × 105, whereas
|¬Registered(S,C),¬TA(T,C)|D is on the order of 4× 1010.

4 Virtual Joins With Nonexistent Links

Outline and Example. The basic idea behind our algorithm can be described as fol-
lows. Let C be a conjunction of literals and L a literal. From basic probability laws, we
have the relation

P (C,¬L) = P (C)− P (C, L). (2)

So the computation of a probability involving a negative relationship literal ¬L can be
recursively reduced to two computations, one with the positive literal L and one with
neither L nor ¬L, each of which contains one less negative relationship literal. In the
base case, all literals are positive, so the problem is to find PD(C) for database instance
D where C contains positive relationship literals only. This can be done with a standard
database table join (further optimizations are discussed below). Figure 1 illustrates the
recursion in an example with two negative relationship literals. Our program computes
the required probabilities in ascending order by the number of relationship literals, so
that the results of previous computations can simply be looked up rather than recom-
puted through a recursive function call. The pseudocode is shown as Algorithm 1.

Fig. 1. A example to show how probabilities for conjunctions with negative relationship literals
are determined by probabilities for conjunctions with positive literals only.

Complexity Analysis. All database accesses involve only conjunctions of positive
literals, so the virtual join algorithm never materializes the complement of a table. The
worst-case run-time and storage requirements are exponential in m, the number of neg-
ative relationship literals. The intention is that the algorithm should be used when the
size of the database is much larger than the number of the relationship predicates used
in the query, i.e., |D| >> m. In typical cases, we have table sizes on the order of 105

while the length of clauses is in the 10s. So the dynamic programming update oper-
ations in lines 7–11 can typically be carried out in main memory.The key complexity
factor for the table joins is the number of distinct variables that occur in the conjunction.
Repeated occurrences of the same variable amount to selection conditions on the vari-
able that actually reduce the size of the join. Joins involving disjoint groups of literals
(e.g. P (X1, X2), Q(Y1, Y2)) can be carried out separately, multiplying the results. We
expect groups of literals that are linked by shared variables to be feasibly small in light
of the following case considerations: (1) Joins that repeatedly involve the same variable
(e.g., P1(X1, X2), P2(X1, X2), P3(X1, X2)) constrain groundings for different predi-
cates to match on the X1 field. In this case the tuple ID representation [7] is effective.
Also, an entity type E usually participates in few relationships, so we may assume that
the number of tables participating in a join that repeatedly involves a variable of type
E is a small constant d. (2) The most expensive type of join for our algorithm is a
relationship chain like P1(X1, X2), P2(X2, X3), P3(X3, X4). In ILP and SRL appli-
cations, relationship chains have small constant length, e.g. k ≈ 3. One reason for this

Virtual Joins With Nonexistent Links 5

Algorithm 1 The Virtual Join Algorithm for computing the number of groundings that
satisfy a conjunction of literals in a given database (interpretation).

Input: database instance D; conjunction of literals of the form (C,¬L1, . . . ,¬Lm), with
m > 0 negative relationship literals Li, where C contains only positive relationship literals.
Output: The database probability PD(C,¬L1, . . . ,¬Lm) defined in Equation (1). This is the
number of groundings that satisfy C,¬L1, . . . ,¬Lm, divided by the maximum number of
possible groundings.

1: for all subsets of literals L ⊆ {L1, . . . , Lm} do
2: Find PD(C,L) using a standard table join.
3: end for
4: if m = 1 then
5: Exit and return PD(C,¬L1) := PD(C)− PD(C, L1).
6: end if
7: for i = 1 to m− 1 do
8: for all subsets of literals L ⊆ {Li+1, . . . , Lm} do
9: Assign PD(C,¬L1, . . . ,¬Li−1,¬Li,L) :=

PD(C,¬L1, . . . ,¬Li−1,L)− PD(C,¬L1, . . . ,¬Li−1, Li,L).
10: end for
11: end for
12: Return PD(C,¬L1, . . . ,¬Lm) := PD(C,¬L1, . . . ,¬Lm−1)− PD(C,¬L1, . . . , Lm−1)

is the cost of searching through the space of chains. Another is that relationship chains
longer than about 3 are difficult for users to understand. It can be shown that any join of
tables can be partitioned into groups with disjoint variables each of size at most k ·d, so
when these parameters are small constants, the required table joins can be broken down
into small independent joins.

4 Empirical Evaluation
We describe results for three relational datasets. All experiments were done on a QUAD
CPU Q6700 with a 2.66GHz CPU and 8GB of RAM.

Methods. We compared the dynamic programming algorithm described as Algorithm
1, abbreviated DP, with two SQL-based methods. (1) SQL-AR: Naively use joins to
build a table that enumerates all groundings. (2) SQL-JT: Apply the given selection
conditions first and then carry out table joins.

Data Sets. We manually created a small dataset for a university. The entity tables con-
tain 38 students, 10 courses, and 6 professors. The Registered table has 92 rows and the
RA table has 25 rows. The second dataset is the MovieLens dataset from the UC Irvine
machine learning repository. It contains two entity tables: User with 941 tuples and
Item with 1,682 tuples, and one relationship table Rated with 80,000 ratings. The third
dataset is a modified version of the financial dataset from the PKDD 1999 cup. We have
two entity tables: Client with 5,369 tuples and Account with 4,500 tuples. Two rela-
tionship tables, CreditCard with 5,369 tuples and Disposition with 892 tuples relate a
client with an account.

Results. For each dataset, we first added all available relationship literals, then ran-
domly selected predicates for selection conditions that correspond to descriptive at-
tributes (e.g., age), and considered all combinations of value assignments to the predi-
cates to form literals. Each combination of the relationship literals with selection condi-
tions defines a test conjunction. In the University database, we enumerated all ground-
ings and checked the results of the DP algorithm directly to confirm the correctness

6 Virtual Joins With Nonexistent Links

of our implementation. For each conjunction examined, the number of groundings is
exactly the same as those computed by the algorithm. Because the dataset is small,
the runtime of all three methods are very similar. In the MovieLens database, we se-
lected age and gender from the User table, rating from the Rated table, and randomly
5 of the genres from the item table as predicates for the input of the algorithms. An
illustrative conjunction is Rated(U, I), rating(U, I) = 4, age(U) = 20, gender(U) =
M , genre(I) = action. Both SQL-AR and SQL-JT are clearly slower than our DP
algorithm. The DP algorithm spends most of its runtime on queries involving positive
literals for which it uses SQL queries on join tables. The additional computation cost
with negative literals is only 15% (67 sec). On the Financial Dataset, we selected 8
attributes in total covering all four tables. The naive SQL-AR method was unable to re-
turn any results. The SQL-JT method did not terminate for negative literals. In contrast,
the DP algorithm had no problem with both positive and negative literals. The increase
in run time for conjunctions with negative literals was again only about 15%.

Data Set # groundings Positive literals only Positive + negative literals
conjunctions SQL-AR SQL-JT DP # conjunctions SQL-AR SQL-JT DP

University 2,280 144 233 239 239 240 388 396 490
MovieLens 1,582,762 960 562 451 451 1,152 955 1,564 518
Financial 24,160,500 1,620 NA 465 465 3,240 NA NA 540

Table 2. Total runtimes in seconds for our test cases.

5 Conclusion
In this paper we proposed an algorithm for the problem of computing the number of
groundings that satisfy a given conjunction of literals in a relational database, where
one or more of the literals is negated. A computational bottleneck for analysis with
negated literals is that materializing tuples that do not satisfy a relationship is generally
not possible because there are too many. We have presented a Virtual Join algorithm
that solves this challenge by reducing the problem of finding the number of satisfying
groundings for conjunctions with negative relationship literals to finding the number of
satisfying groundings for conjunctions with positive relationship literals only.

References
1. P. Domingos and M. Richardson. Markov logic: A unifying framework for statistical relational

learning. In Intro. to Statistical Relational Learning [3], chapter 12, pages 339–367.
2. L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic relational models.

In Introduction to Statistical Relational Learning [3], chapter 5, pages 129–173.
3. Lise Getoor and Ben Tasker. Introduction to statistical relational learning. MIT Press, 2007.
4. Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In

Introduction to Statistical Relational Learning [3], chapter 10, pages 291–318.
5. S. Muggleton and J. Firth. Relational rule induction with cprogol4.4. In S. Dzeroski and

N. Lavrac, editors, Relational Data Mining, chapter 7. Springer Verlag, 2001.
6. J. R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239–266,

1990.
7. X. Yin and J. Han. Exploring the power of heuristics and links in multi-relational data

mining. In Foundations of Intelligent Systems (ISMIS), pages 17–27, 2008.
8. X. Yin, J. Han, J. Yang, and P. S. Yu. Crossmine: Efficient classification across multiple

database relations. In CB Mining and Inductive Databases, pages 172–195, 2004.

