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Abstract. HIV therapy optimization is a hard task due to rapidly evolv-
ing mutations leading to drug resistance. Over the past five years, several
machine learning approaches have been developed for decision support,
mostly to predict therapy failure from the genotypic sequence of viral
proteins and additional factors. In this paper, we define a relational rep-
resentation for an important part of the data, namely the sequences of a
viral protein (reverse transcriptase), their mutations, and the drug resis-
tance(s) associated with those mutations. The data were retrieved from
the Los Alamos National Laboratories’ (LANL) HIV databases. In con-
trast to existing work in this area, we do not aim directly for predictive
modeling, but take one step back and apply descriptive mining methods
to develop a better understanding of the correlations and associations
between mutations and resistances. In our particular application, we use
the Warmr algorithm to detect non-trivial patterns connecting muta-
tions and resistances. Our findings suggest that well-known facts can be
rediscovered, but also hint at the potential of discovering yet unknown
associations.

1 Introduction

The optimization of HIV therapy is a crucial task, as the virus rapidly develops
mutations to evade drug pressure [4]. Several machine learning approaches have
been developed for decision support in this area. The task is typically predictive
modeling [5, 4, 2], for instance, to predict the resistance against one or several
drugs from the genotypic sequence of viral proteins and other data. While this
is the ultimate goal in this application, we take one step back here and aim
to find all possible correlations and associations between mutations and resis-
tance, which has been done so far only in a limited form [5]. To do so, we define
a relational representation for an important part of the data, namely the se-
quences of a viral protein (reverse transcriptase), their mutations, and the drug
resistance(s) associated with those mutations. In the following, we present some
background of this work, the raw data, the relational data representation, and
some highlight results from applying standard relational association rules to the
problem.
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Fig. 1. Recent screenshot of LANL Resistance Database web interface showing the first
ten results

2 Background

The infection with HI virus sooner or later causes the disease AIDS, which is
still beyond remedy. HIV belongs to the group of retroviruses which establishes
itself permanently in cells of the host’s immune system. This causes a chronic
infection which leads to a depletion of essential immune system cells, and the
AIDS characteristics become observable. Up to now, no treatment for complete
remedy or vaccination against HIV is available. Current medication strategies try
to defer the point where AIDS symptoms begin to show and extend the survival
time of patients. To achieve this, several drugs suppressing different steps of virus
replication and infection were developed. These drugs are predominantly active
against one of a few target proteins – e.g., reverse transcriptase, HIV protease or
the envelope protein – which are all essential for a successful virus propagation.
In this work, we present the analysis of gene sequences for reverse transcriptase
genes. This is the enzyme which converts the viral RNA into DNA, which is
necessary for the integration into the host cell’s genome, and hence essential for
replication. The integrated copy of the virus DNA acts later on as a template for
the production of new virus RNA offspring. Due to a high mutation rate during
replication, alterations of the gene sequences occur frequently and some of them
confer resistance against a certain drug. If such a mutation occurs during drug
treatment, the resistant virus strain becomes selectively propagated, the drug
treatment is not effective any longer, and a new drug has to be administered. A
strategy to overcome this problem is the concurrent application of several drugs,
each acting against a different protein and target site. The rationale for this
is that a single point mutation cannot confer resistance against drugs targeting
different sites in one step. However, even this strategy does not work indefinitely,
but only impedes the selection of a resistant virus strain for an extended period.
We studied the occurrence of mutations conferring resistance against a certain
number of drugs, and looked for rules correlating mutations and resistances
against drugs.



Fig. 2. Screenshot of reverse transcriptase DNA alignment with corresponding amino
acid color blocks

3 Dataset and Preprocessing

In the following, we describe the data we used and how we defined a suitable
representation for mining first-order association rules with Warmr [3].

The gene sequence and mutation data we used in this study were retrieved
from the Los Alamos National Laboratories (LANL) on November 28th 2006.
The main information was derived from the LANL HIV resistance database
(for a recent screen shot see Figure 1). Each entry of the database describes an
observed resistance mutation and has eight attributes: affected gene, drug class,
string identifier, wild type amino acid, position, altered amino acid, underlying
nucleotide sequence alteration and literature reference. Wild type in this context
means that the sequence was retrieved from the reference virus strain, which
is one of the first isolates and which can therefore be regarded as original or
wild. Currently, the database contains information about 370 known resistance
mutations.

In addition, DNA sequences corresponding to the reverse transcriptase gene
region were selected via the web interface of LANL, and subsequently re-aligned
manually. This part of the data comprises 2,339 DNA sequences of a length from
1,320 to 1,443 nucleotides, which corresponds to protein sequences from 440 to
481 amino acid residues. The DNA sequences were aligned using the program
package ARB [6], taking into account the genes’ reading frame to avoid unnec-
essary frame shifts. The alignments are necessary to make sequence positions
comparable and to identify mutations, i.e., deviations from the wild type at a
given position. A screenshot displaying the DNA alignment and the correspond-
ing amino acid sequence as colored blocks is shown in Figure 2. This alignment
was exported to an amino acid alignment consisting of 481 positions and further
processed.

Because positions for mutations are given with respect to the wild type se-
quence (HXBII), a head line was inserted which holds the corresponding wild
type residue number if there is an amino acid in the wild type sequence, or



Table 1. Tabular representation of amino acid sequence alignment with only a few
selected columns and rows

0, WildType, 204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,-,219
1, RefSeque, E , L , R , Q , H , L , L , R , W , G , L , T , T , P , D ,-, K
796 ,CpxNG000, E , L , R , E , H , L , L , K , W , G , F , A , T , P , D ,-, K
1992,X0NG0000, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
1426,CpxEE003, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
1427,A00Ee002, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
1975,CpAEE000, Q , L , R , E , H , L , L , E , W , G , I , P , X , P , R ,X, K
2175,CpxRU000, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
2023,X0NG0032, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
837, 00Ne0008, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K
838, 00Ne0009, E , L , R , E , H , L , L , K , W , G , F , T , T , P , D ,-, K

Table 2. Schemata of Warmr input relations

key(Sequence) index number to address the sequences

has mutation(Sequence, Mutation) connects a sequence identifier with a
mutation identifier

resistance against(Mutation, Drug) links a mutation with the resistance
against a drug

mutation property(Mutation, AA1, defines the properties of a mutation,
Position, AA2) where an amino acid at a certain

position was substituted by another

a ’–’ -sign, if the alignment shows a gap for the wild type sequence at a cer-
tain position. The resulting table has the following layout (for an example, see
Table 1): Line 1 contains the reference sequence indices in the alignment, fol-
lowed by the values of the aligned 2,339 gene sequences. For identification, an
index starting at 0 is inserted in column 1, and a string identifier in column
2. The remaining columns contain the values of the aligned amino acids of the
above mentioned sequences. This table is used to detect mutations (deviations
from the wild type), which are stored in the relations has mutation(Sequence,
Mutation) and mutation property(Mutation, AA1, Position, AA2) (for de-
tails, see below).

The resulting relational representation consists of three relations: The base
relation has mutation connects sequences and mutations, the second relation
mutation properties describes the properties of mutations, and the third rela-
tion resistance against connects mutations and their resistance against a cer-
tain drug. The relations are summarized in Table 2. Typical instances from these
relations could be the following: Sequence number 8 carries mutation number 8
(has mut(8,8)), where mutation number 8 confers resistance against a substance
from the NRTI group (res against(8, ’Nucleoside RT Inhibitor(NRTI)’)).
Mutation number 8 is further described as an amino acid change from ’I’ to ’R’
at position 51 (mut prop(8,’I’,51,’R’)).

4 Results and Discussion

For our analysis, we used Warmr in the implementation of ACE 1.2.11. With
a minimum support of 0.1, we obtained 4,931 frequent queries after a running



Table 3. Sample association rules found

Number Natural language description Supp. Conf. Lift

(1) If position 177 is changed to E and position 286 0.29 0.83 1.90
changed to A, then a change of position 335 to D
conferring resistance against NRTI is found.

(2a) If 177 E, 292 I and 35 T 0.28 0.87 2.00
then a mutation 335 D with NRTI resistance is found.

(2b) If 177 E, 292 I and 291 D 0.29 0.87 2.00
then a mutation 335 D with NRTI resistance is found.

(2c) If 177 E, 292 I and 293 V, 0.30 0.86 1.97
then a mutation 335 D with NRTI resistance is found.

(3) If 6 D, 11 T, 35 T and 39 K, then 43 E responsible 0.06 0.96 8.7
for resistance against NRTI.

(4) If 41 L, then 215 Y. 0.06 0.82 6.8
(5a) If 41 L and 215 Y, then 277 K. 0.05 0.79 1.5
(5b) If 41 L and 215 Y, then 293 V. 0.04 0.75 1.1

time of two days on a standard Linux machine.1 The output of Warmr consists
of frequent queries and association rules. Because association rules are more
interesting than frequent queries in our application, we will focus on the rules
here. To estimate the “interestingness” of a rule, we also calculated the lift
measure for each of the resulting 5,096 rules. In the rules, each mutation is given
with the position relative to the wild type sequence and the altered amino acid.

Remarkably, some of the rules concern resistance mutations that were not
known at the time of data retrieval. This is the case for the first rule presented
here (see rule (1) in Table 3; resistance mutation 335 D was not part of the
analyzed data), which is very similar to three variants of another rule (see rules
(2a) to (2c)). These results show the potential of the approach, as patients that
are already positive for mutations 177 E and 292 I or 286 A might better not be
treated with NRTI, because the development of a resistance caused by mutation
335 D is rather likely. Another interesting rule with a newly discovered resistance
is rule (3), which reflects a very tight coupling with mutation 43 E, as the
frequency of the body alone is already 0.063.

Additionally to those findings which elucidated correlations between muta-
tions and newly discovered resistances, we also found well-known correlations in
the data. The mutations 41 L and 215 Y (see rule (4), both linked with resis-
tance against NRTI) have also been described as highly correlated before [7]. In
addition to this rule, there is an interesting extension (see rules (5a) and (5b)).
Mutation 277 K is an alteration with respect to the wild type sequence and is
not described as conferring resistance yet. Nevertheless, 277 K has shown a high
correlation to known resistance mutations and may turn out to be a resistance
mutation in the future, or may give strong hints for an evolving resistance based
on mutations 41 L or 215 Y in the further course of a patient’s treatment. For

1 For subsequent experiments, the minimum support was lowered.



a more detailed analysis, we refer to the diploma thesis of the second author of
this paper [1].

5 Conclusion

We presented a relational representation of data derived from the LANL HIV
databases, and an analysis of the data using descriptive mining methods, to
discover new correlations and associations between mutations and resistances
against HIV drugs. Given the relevance of the application and the complex struc-
ture of the data, we believe it is a rewarding new field for ILP and relational
learning methods. In particular, these methods lend themselves to the discovery
of co-occurring mutations, potentially also giving hints for viral evolution paths.

The work presented in this paper could be extended in several ways: First,
it would be interesting to consider a richer representation of proteins, for in-
stance, taking into account amino acid properties. However, it has to be noted
that only sequence information is known.2 Second, the chemical structure of
the inhibitor could be included. Third, it is straightforward to extend this type
of analysis to other viral genes, e.g., protease. Fourth, the EuResist database
(see http://www.euresist.org/) contains more detailed information than the
LANL HIV databases, including therapy and patient data. To make the pro-
posed approach scalable to such large-scale data, one would have to preprocess
them appropriately and use suitable abstractions.
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