
Don’t Fear Optimality: Sampling for Probabilistic-Logic
Sequence Models

Ingo Thon

Katholieke Universiteit Leuven {firstname.lastname}@cs.kuleuven.be

Abstract. One of the current challenges in artificial intelligence is modeling dy-
namic environments that change due to the actions or activities undertaken by
people or agents. The task of inferring hidden states, e.g. the activities or inten-
tions of people, based on observations is called filtering. Standard probabilistic
models such as Dynamic Bayesian Networks are able to solve this task efficiently
using approximative methods such as particle filters. However, these models do
not support logical or relational representations. The key contribution of this pa-
per is the upgrade of a particle filter algorithm for use with a probabilistic logical
representation through the definition of a proposal distribution. The performance
of the algorithm depends largely on how well this distribution fits the target distri-
bution. We adopt the idea of logical compilation into Binary Decision Diagrams
for sampling. This allows us to use the optimal proposal distribution which is
normally prohibitively slow.

1 Introduction

One of the current challenges in artificial intelligence is modeling dynamic environ-
ments that are influenced by actions and activities undertaken by people or agents.
Consider modeling the activities of a cognitively impaired person [1]. Such a model
can be employed to assist people, using common patterns to generate reminders or de-
tect potentially dangerous situations, and thus can help to improve living conditions. To
realize this, the system has to infer the intention or the activities of a person from fea-
tures derived from sensory information. The typical model used in such processes are
Hidden Markov Models (HMM) and their generalizations like factorial HMMs, coupled
HMMs or Dynamic Bayesian Networks (DBN).

Algorithms that perform efficient and exact inference in single state models like
HMMs are well known. Also, for factorial HMMs and coupled HMMs efficient ap-
proximative algorithms exist that exploit structural properties [2] and for DBNs particle
filters [3] present a good alternative.

However, recent research has shown that in many activity modeling domains, re-
lational modeling is not only useful [4] [5] but also required [6]. Here, transitions
between states are factored into sets of probabilistic logical conjectures that allow a
dynamic number of random variables, which makes the translation into a standard Dy-
namic Bayesian Network impossible.

Our contributions are: First we show how hidden state inference problems can be
formulated through Causal Probabilistic Time Logic (CPT-L). CPT-L was introduced
previously, together with a learning algorithm for the fully observable case [7]. We

Presented at the 19th International Conference on Inductive Logic Programming (ILP’09).



Fig. 1. Graphical representation of an HMM. States and observations are in our case herbrand
interpretations.

use a logical compilation approach to implement efficient sampling from the optimal
proposal distribution. The proposal distribution is a key component of the particle filter
algorithm Sequential Importance Resampling (SIR). Logical compilation has gained lot
of interest in the past few years for speeding up inference and learning in probabilistic
logic, especially compilation into Binary Decision Diagrams (BDD) [8] [9] [7] anno-
tated with probabilities and its variants [10] [11]. In this work we show how as second
contribution how the generated BDDs can be used to sample models of the represented
formula according to the underlying distribution.

Related Work: Most sequential SRL models restrict themselves to a single atom
per time point [12] or one probabilistic choice, e.g. outcome of an action. We are only
aware of the following three exceptions: The Simple Transition Cost Models [13] pro-
posed by Alan Fern. These models allow the specification of costs for transitions, which
can be used to represent probabilities, but they have to be equal over all transitions. In
Biswas et al.[4] the authors learn a Dynamic Markov Logic Network, but translate to
DBNs for inference. Even though this is not a problem in general, it requires a state
space with a fixed size that is known in advance. In Zettlemoyer et. al [14], the hidden
state is defined by means of one weighted FO-Formula. This approach requires mutu-
ally exclusive hypotheses, which are hard to construct and it is unclear whether they
can deal with functors.

We proceed by introducing the CPT-L model. Afterwards, we specify the compo-
nents of the algorithm that samples from the filtering distribution. Finally we discuss
experimental result and a conclusion. Due to a lack of space, we assume basic knowl-
edge of First Order Logic and Binary Decision Diagrams.

2 Model

The model considered is basically a HMM where states and observations are Herbrand
interpretations and transition- and observation-probabilities are defined in terms of a
probabilistic logic (cf. Fig 1). More formally:

Definition 1. A CPT-L model consists of a set of rules of the form

r = (h1 : p1) ∨ . . . ∨ (hn : pn)← b1, . . . , bm

where the pi form a probability distribution such that
∑

i pi = 1, hi are literals, bi are
atoms forming the body and the hi : pis are called the head.

The interpretation of such a rule is: whenever the body is true at time-point k the rule
will cause one of the head elements to be true at time-point k + 1.



Consider the following example of a rule that models the current activity:

r(P,X) = a(P,X) : 0.8 ∨ a(P, drink) : 0.1 ∨ a(P,work) : 0.1← a(P,X).

This rule states that person P will continue its current activity with probability 0.8 or
switch to one of the activities work, drink with probability 0.1. A successor state is
generated by first determining the set of applicable rules, and then, for each applicable
rule, selecting one head element. The probability of a selection is defined by the product
of all selected head elements probabilities. The probability of a successor state is the
sum of of the probabilities of all selections generating this state.

In this work, we additionally assume that a subset of the predicates are declared as
observable whereas the others are unobservable. In the previous example the predicate
a/2 would typically be unobservable, whereas predicates like pose/2, movement/2,
object in scene/1 would be observable. We assume that all predicates in the head of
one rule are either observable or unobservable. A rule is called un-/observable according
to the observability of the predicates in the head.

In the rest of the text, xk denotes the set of all unobservable facts and yk the observ-
able facts true at time point k. The probability of a hidden state sequence together with a
sequence of observations follows directly from the semantics of CPT-L. Note: From the
viewpoint of CPT-L the observation yk of time-point k belongs to the successor state
as both are caused by the current state. For readability purposes, we keep indexes of
hidden states and observations together. With xl:k we denote the sequence of all states
between l and k.

3 Algorithm

Our goal is to estimate the filtering distribution p(xk|y1:k). This distribution can be used
to answer queries like a(P1, Act), a(P2, Act), P1 6= P2 or for parameter learning
with (Stochastic) Expectation Maximization. Exact calculation of this distribution is
typically prohibitively slow due to the large structured state space [15]. Therefor we
use Sampling Importance Resampling (SIR) [3]: we sample from a proposal distribution
and compute importance weights that make up for the difference. In this section we first
briefly discuss the mechanics of SIR. Afterwards we alter the original CPT-L algorithm
[7] using a BDD to represent the distributions required by SIR.

3.1 Sampling Importance Resampling (SIR)

The filtering distribution can be approximated by a set of particles (wi
k, xi

k) consist-
ing of a weight wi

k and a state xi
k. The weights are an approximation of the relative

posterior distribution. The SIR algorithm calculates the samples recursively. A single
step is described in Algorithm 1. In each step, the particles are drawn from a sam-
pling distribution π(xk|xi

0:k−1, y0:k) and each particle’s weight is calculated. Typical
sampling distributions are the transition prior p(xk|xi

k−1), a fixed importance function
π(xk|xi

0:k−1, y0:k) = π(xk), or the transition posterior p(xk|xi
0:k−1, y0:k). For reason-

able distributions, not the correctness, but the sample variance, and thus the required
number of particles, largely depends on the choice.



Algorithm 1 number particles N , time step k, proposal distribution π

function SAMPLE((π, pk, po, P ))
for i = 1, . . . , N do

xi
k ∼ π(xk|xi

0:k−1, y1,k)

ŵi
k := wi

k−1

p(yk|xi
k)p(xi

k|xi
k−1)

π(xi
k
|xi

0:k−1,y0:k)

Normalize weights wi
k = ŵi

k/
P

j ŵj
k

Sample N particles of xi
k according to wi

k with weight 1/P if N̂thresh >

effective # particlesz }| {`P
i(w

i
k)2

´−1

3.2 Optimal Proposal distribution

The transition prior p(xk|xk−1) is often used as proposal distribution for SIR as it al-
lows for efficient sampling. Using the transition prior, the state space is explored with-
out any knowledge of the observations which makes the algorithm sensitive to outliers.
While this nontheless works well in many cases, it is problematic in discrete, high
dimensional state spaces when combined with spiked observation distributions. High
dimension state spaces are common in relational domains. It can be shown that the pro-
posal distribution p(xi

k|xi
k−1, yk)? together with weight update wi

k := wi
k−1P (yk|xi

k−1)
is optimal [3] and does not suffer from this problem.

Algorithm 2 Generate formula/BDD representing
∑

xi
k
P (yk, xi

k|xi
k−1)

1: Initialize f := >, Imax = ∅ the “maximal” successor state
2: Compute applicable ground rules Rk = {rθ|body(rθ) is true in xj

k−1, r unobservable}
3: for all rules (r = (p1 : h1, ..., pn : hn)← b1, ..., bm) in Rk do
4: f := f∧(r.h1∨...∨r.hn), where r.h denotes the proposition obtained by concatenating

the name of the rule r with the ground literal h resulting in a new propositional
variable r.h (if not hi = nil).

5: f := f ∧ (¬r.hi ∨ ¬r.hj) for all i 6= j
6: hi ← r.hi; Imax = Imax ∪ hi

7: Compute applicable ground observation Sk = {rθ|body(rθ) is true in Imax, r observable}
8: for all observations (r = (p1 : h1, ..., pn : hn)← b1, ..., bm) in Sk do
9: f := f ∧ ((r.h1 ∨ ... ∨ r.hn)↔ (b1, . . . , bn)), for hi ∈ Iyt+1

10: f := f ∧ (¬r.hi ∨ ¬r.hj) for all i 6= j
11: for all facts l ∈ Iyt+1 do
12: Initialize g := false
13: for all r ∈ Sk with p : l ∈ head(r) do g := g ∨ r.l
14: f := f ∧ g

BDD construction: To sample from the proposal distribution and update the weight
efficiently we build a BDD that represents P (yk|xi

k−1). The algorithm (shown as Al-
gorithm 2) is a modification of the algorithm presented in previous work [7]. The algo-
rithm builds a BDD representation of a formula which computes the joint probability of

? Here it is crucial, that the observation yk is the observation generated by the state xk.



all possible selections that result in a transition for which the following four conditions
hold. The transition (a) starts at xi

t−1 (line 2) and (b) goes over to a valid successor state
xt. In xt it (c) generates the observation yt (line 8-14) using (d) the observable rule
applicable in xt. Each node of the generated BDD r : hi corresponds to selecting (for
one rule) the head hi or not, as dictated by the probability pi.

BDD sampling Sampling a path according to the pi from the root of this BDD to the

Fig. 2. Calculation of upward probability.

terminal node with label 1 corresponds
to sampling a value from p(xi

k|xi
k−1, yk).

However, in most cases, sampling paths
naively according to the pi’s will yield
a path ending in the 0-terminal, that will
then have to be rejected. There for at ev-
ery node, when choosing the correspond-
ing subtree, we base our choice not only
on its probability, but also on the proba-
bility of reaching the 1-terminal through this subtree. This corresponds to conditioning
the paths such that we get a valid successor state and together with the observation
yk. We call this probability upward probability because of the way it is computed. The
upward probability of the root node corresponds to the probability of reaching the 1-
terminal, i.e., P (yk|xi

k−1). The computation starts by initializing the values in the leafs
with the label of the leaf. Afterwards, the probabilities are propagated upward as illus-
trated in Fig. 2 ??. The subtree is then chosen in every node according to

pN ·P (↑T1N )
P (↑T0N )+pN ·P (↑T1N ) = pN ·P (↑T1N )

P (↑N) respectively: P (↑T0N )
P (↑N) .

4 Experiments

Fig. 3. Effective number of particles di-
vided by runtime in dependence on se-
quence length

To evaluate our algorithm, we recreated
the model of Biswas et al [4], according
to the parameters specified in their work.
There a person is observed during writ-
ing, typing, mousing, eating, and so on.
The computer has multiple cues to clas-
sify the activities. Two examples are the
pose of the person or whether an apple
is observed in the scene. As the observa-
tion distribution is fairly smooth and had
nowhere zero mass the transition-prior is
expected to perform well as proposal dis-
tribution.

For the experiments we sampled 5 sequences of length 10. Afterwards we run the
particle filter algorithm with the exact proposal distribution and the transition prior us-
ing 100 particles. For the optimal prior each run took less then a minute on a MacBook
?? For the reader familiar with [8] [9] the use here and in [7] is a bit different. The former is the

choice of a literal being true or false, whereas the latter represents whether one of the head gets
chosen. Using the backward probability of [9] instead of the upward, the sampling generalizes.



Pro 2.16 Ghz. The transition prior was approximately 5 times faster. In Fig 3 the effec-
tive number of particles (cf. Alg 1) divided by the runtime in ms is plotted. The horizon-
tal axis is the sequence length. Even though not significant the optimal performed on
average better. In toy example with spiked observation distribution the transition prior
typically lost all particles in a few steps.

5 Conclusions and Future work
We propose a novel way of sampling from a joint distribution in the presence of ev-
idence by the means of BDDs. We show that the final system allows more efficient
filtering than using the transition prior in relational domains. An advantage of our com-
plete system is that the final algorithms are very intuitive as it builds on well established
algorithm like SIR. We plan to extend our filtering algorithm towards more elaborate
techniques like for example Rao-Blackwellized Particle Filters, and Online Stochastic
EM. Finally, we will investigate the use of our technique of sampling from a BDD also
for non-sequential probabilistic logics, as well as for standard DBNs

Acknowledgments: For discussion we are grateful to (in temporal order) K. Ker-
sting, N. Landwehr, L. De Raedt, and B. Gutmann. Special thanks to K. Driessens for
approximating a native speaker.

References

1. Pollack, M.E.: Intelligent technology for an aging population: The use of AI to assist elders
with cognitive impairment. AI Magazine 26(2) (2005) 9–24

2. Landwehr, N.: Modeling interleaved hidden processes. In: ICML 2008
3. Doucet, Freitas, D., Gordon, eds.: Sequential Monte Carlo methods in practice. Springer
4. Biswas, R., Thrun, S., Fujimura, K.: Recognizing activities with multiple cues. Lecture

Notes in Computer Science 4814 (2007) 255
5. Natarajan, S., Bui, H., Tadepalli, P., Kersting, K., Wong, W.K.: Logical hierarchical hidden

markov models for modeling user activities. In: ILP-08
6. Sridhar, M., Cohn, A.G., Hogg, D.C.: Learning functional object-categories from a relational

spatio-temporal representation. In: ECAI 2008. (2008)
7. Thon, I., Landwehr, N., De Raedt, L.: A simple model for sequences of relational state

descriptions. In: ECML08
8. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its application

in link discovery. In: ICJAI-07. (2007) 2462–2467
9. Ishihata, M., Kameya, Y., Sato, T., ichi Minato, S.: Propositionalizing the em algorithm by

bdds. In: ILP. (2008)
10. ichi Minato, S.: Compiling bayesian networks by symbolic probability calculation based on

zero-suppressed bdds. In: In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence, AAAI Press (2007) 2550–2555

11. Chavira, M., Darwiche, A., Jaeger, M.: Compiling relational bayesian networks for exact
inference. Int. J. Approx. Reasoning 42(1-2) (2006) 4–20

12. Kersting, K., De Raedt, L., Gutmann, B., Karwath, A., Landwehr, N.: Relational sequence
learning. In: Probabilistic Inductive Logic Programming. Volume 4911 of Lecture Notes in
Computer Science. Springer (2008) 28–55

13. Fern, A.: A simple-transition model for relational sequences. In: IJCAI-05
14. Zettlemoyer, L.S., Pasula, H.M., Kaelbling, L.P.: Logical particle filtering. (2008)
15. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In: UAI 1998


