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Abstract. This paper presents a nonmonotonic ILP approach for the
automatic revision of metabolic networks through the logical analysis of
experimental data. The method extends previous work in two respects:
by suggesting revisions that involve both the addition and removal of
information; and by suggesting revisions that involve a combination of
gene function, enzyme inhibition and metabolic reactions. Our proposal
is based on a new declarative theory of metabolism expressed in a non-
monotonic logic programming formalism. With respect to this theory, a
mixture of abductive and inductive inference is used to compute a set of
minimal revisions needed to make a given network consistent with some
observed data. In this way, we describe how a reasoning system called
XHAIL was able to usefully revise a state-of-the-art metabolic network
in order to better account for real-world experimental data acquired by
an autonomous laboratory platform known as the Robot Scientist.

1 Introduction

Metabolic networks are formal descriptions of the enzyme-catalysed biochemical
transformations that mediate the breakdown and synthesis of molecules within
a living cell. Logic programs are useful for representing and reasoning about
such networks as they provide an expressive relational language with efficient
computational support for deduction, abduction and induction. Moreover, the
recent development of nonmonotonic learning systems such as XHAIL (eXtended
Hybrid Abductive Inductive Learning) [5] means that the full potential of logic
programs with both classical and default negation can be now exploited for the
representation and inference of defaults and exceptions under uncertainty.

This paper introduces a logical theory of metabolism which can be used to
compute a set of minimal revisions needed to make a given network consistent
with observed data. Using this theory, we describe how XHAIL correctly revised
a state-of-the-art metabolic model to better account for real-world data acquired
by an autonomous laboratory platform known as the Robot Scientist [1]. The
method improves upon previous work by suggesting revisions that involve both
the addition and removal of information; and by suggesting revisions that involve
a combination of gene function, enzyme inhibition and metabolic reactions.
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2 Background

Metabolic networks are collections of interconnected biochemical reactions that
mediate the synthesis and breakdown of essential compounds within a cell. These
reactions are catalysed by specific enzymes whose amino acid sequences are
specified in regions of the host genome called Open Reading Frames (ORFs). The
activity of particular pathways within a network are controlled by regulating the
expression of those genes on which the associated ORFs are located. One such
pathway is exemplified in Figure 1, below, which shows the Aromatic Amino
Acid (AAA) biosynthesis pathway of the yeast S. cerevisiae.

Nodes in the graph below are metabolites involved in the transformation
of the start compound Glycerate-2-phosphate into the amino acids Tyrosine,
Phenylalanine, and Tryptophan. Arrows are chemical reactions from substrates
to products. Each node is labelled with a KEGG identifier (in red); and each
arrow is annotated with a 4-part EC number (in blue) and a set of ORFs (in
green). The single dashed line shows the inhibition of an enzyme (YBR249C) by
a metabolite (C00082). The double dashed line represents the cellular membrane,
which separates the cell cytosol from the growth medium.

ORFs shown above each other are iso-enzymes catalysing the same reaction,
while ORFs next to each other are enzyme-complexes. All reactions take place
in the cytosol using nutrients imported from the medium; and they proceed
at a standard rate (within 1 day), except for the importation of two italicised
compounds (C01179 & C00166), which take longer (between 1 and 2 days).
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Fig. 1. Aromatic Amino Acid (AAA) biosynthesis pathway of the yeast S. cerevisiae



Over time, metabolic models must be revised as discrepancies emerge between
predicted and observed results. This is usually done by hand, as for the AAA
pathway, which was derived from the KEGG database, but was manually tuned
to better explain the results of initial semi-automated growth experiments where
different strains of yeast (from which certain ORFs are knocked out) are cultured
in various growth media (to which certain nutrients are added) [2].

Now, our goal is to mechanise this revision process by applying XHAIL [5]
to data obtained by a fully-autonomous improved Robot Scientist [1].

In brief, XHAIL is a nonmonotonic ILP system that takes a background
theory B and a set of examples E, to return a set of hypotheses H that entail
E with respect to B. The hypothesis space is controlled by a set M of mode
declarations [3] that allow the user to constrain which literals may appear in the
heads and bodies of hypothesis clauses. A compression heuristic [3] then selects
between competing hypotheses by preferring solutions with fewer literals.

3 Approach

Our metabolic theory has the following basic types: ORFs and metabolites,
which are denoted by their KEGG identifiers; enzyme-complexes and reactions,
which are given unique integer identifiers; days and experiments, which are also
represented by integers; and extra-cellular or intra-cellular compartments, of
which we only consider the growth medium and cell cytosol.

The additional nutrients and knockout strains in each growth experiment
are represented by ground atoms of the form additional nutrient(e,m) and
knockout(e,o), for some particular experiment e, ORF o, and metabolite m.
In addition, a minimal set of growth nutrients common to all experiments are
represented by ground atoms of the form start compound(m).

By definition, any metabolite Met that is a start compound or additional
nutrient is in the compartment medium on any Day in any experiment Exp:

in compartment(Exp,Met,medium,Day) :- start compound(Met).

in compartment(Exp,Met,medium,Day) :- additional nutrient(Exp,Met).

Each enzyme-complex is given an integer identifier c. Then, for each reaction
catalysed by c, one fact is added to the model of the form catalyst(r,c), where
r is the corresponding reaction identifier. Also, for each ORF o needed in the
complex c, one fact is added to the model of the form component(o,c).

Any enzyme inhibition in the AAA pathway, is represented by a ground
atom of the form inhibitor(c,m). Metabolites that are essential to cell growth,
like the three amino acids, are specified as such by ground atoms of the form
essential compound(m).

Cell development is arrested if an essential metabolite is not in the cytosol
but growth is predicted otherwise. An enzyme-complex is deleted if a component
ORF is knocked out; and it is inhibited if some inhibitor is present (in high
concentration) as an additional nutrient:



arrested(Exp,Day) :-

essential compound(Met), not in compartment(Exp,Met,cytosol,Day).

predicted growth(Exp,Day) :- not arrested(Exp,Day).

deleted(Exp,Cid) :- component(Orf,Cid), knockout(Exp,Orf).

inhibited(Exp,Cid) :- inhibitor(Cid,Met), additional nutrient(Exp,Met).

To complete our background theory, it remains to give a logical encoding
of the metabolic reactions. To facilitate the addition and removal of reactions,
they are each given one of three degrees of belief: certain (i.e., definitely in
the model), retractable (i.e., initially in the model, but can later be excluded),
or assertable (i.e., initially out of the model, but can later be included). Note
that this allows us to consider reactions from related pathways or organisms for
inclusion in a revised network; which is common biological practice as it ensures
all newly introduced reactions are at least feasible.

For every reaction, one rule is added to the theory for each product. Each
rule states that the product will be in its compartment if (i) all substrates are
in their respective compartments, (ii) there is an enzyme-complex catalysing the
reaction whose activity is not inhibited and whose ORFs are not deleted, (iii)
sufficient time has passed for the reaction to complete, and (iv) the reaction has
not been excluded (if it is retractable) or it has been included (if it is assertable).
As an example, the following is one of two rules produced for reaction 2.5.1.19
with id 31, assuming it is retractable:

in compartment(Exp,"C01269",cytosol,Day) :-

in compartment(Exp,"C00074",cytosol,Day),

in compartment(Exp,"C03175",cytosol,Day),

catalyst(31,Cid),

not inhibited(Exp,Cid),

not deleted(Exp,Cid),

Day >= 1,

not exclude(31).

For every start compound and additional nutrient, m, we assume there is
an import reaction which takes m from the medium into the cytosol; and to
each reaction with no known catalysts, we attribute an unknown catalyst (so all
reactions are assumed to proceed in the absence of evidence to the contrary).

Positive and negative examples, which correspond to results about the growth
and non-growth of the yeast in an experiment e on a day d, are denoted by ground
literals of the form observed growth(e,d) or ¬observed growth(e,d) where,
purely for convenience, we use classical negation.

Previous work [6] describes how proof-of-principle tests on artificial data were
used to demonstrate XHAIL’s ability to revise a model by adding and removing
information. In the next section, we describe the result of using real data from
40 experiments conducted by the Robot Scientist to revise the state-of-the-art
AAA model in Figure 1.



4 Results

Upon submitting the observed growth results to XHAIL, they were immediately
found to be inconsistent with the AAA model, thereby suggesting that a revision
was necessary. After experimenting with the language bias for about one hour,
we obtained around half a dozen hypotheses that achieved logical consistency
between predicted and observed growth. On closer examination, these hypotheses
turned out to be different combinations of four basic conjectures relating to the
metabolites Anthranilate and Indole:

a. Anthranilate Import: There was 1 abductive conjecture inhibited(Exp,25,1)
stating that the import of Anthranilate (which is mediated by a hypothetical
enzyme with id 25) is blocked on day 1 in all experiments. This can be understood
as meaning that the import of Anthranilate is a slow reaction analogous to the
import of C01179 and C00166. Following a more detailed study of the raw growth
data, we believe is indeed the case and have updated our model accordingly:

b. Enzyme Complex: There were 3 alternative abductive conjectures of the form
component("YER090W",7), component("YER090W",8) or component("YER090W",9)
stating that YER090W is needed as part of a complex in any of 3 reactions,
2.4.2.18, 5.3.1.24 or 4.1.1.48 (which are catalysed by complexes 7,8 and 9, re-
spectively) immediately following the Anthranilate Synthase step (4.1.3.27) in
the Tryptophan pathway. This is plausible as reaction 4.1.1.48 is catalysed by
YKL211C, which is already known to form a complex with YER090W in reaction
4.1.3.27. But an extensive literature survey, encompassing recent genome-wide
protein interaction studies, has so far proved inconclusive.

c. Indole Contamination: In addition, there was 1 inductive conjecture of the
form predicted growth(Exp,Day):-additional nutrient(Exp,"C00463") which can
be understood as stating that the use of Indole as an additional nutrient leads to
biased growth readings. This is plausible as Indole has a distinctive yellow colour
much darker than the other nutrients. We wondered if this property might be
confusing the optically measured growth readings. But, a more detailed analysis
of the raw growth curves observed on Indole enriched media do not support this
conclusion.

d. Indole Contamination: Finally, there was 1 inductive conjecture of the form
additional nutrient(Exp,"C00078" ):-additional nutrient(Exp,"C00463") which
can be understood as stating that the Robot Scientist’s source of Indole (C00463)
is contaminated with Tryptophan (C00078). This is plausible as Indole can be
synthesised from Tryptophan (by essentially reversing reaction 4.2.1.20) but the
two may be hard to separate. In any event, using Mass Spectrometry, we have
verified that our Indole was indeed contaminated with Tryptophan; and we will
obviously take steps to avoid this source of error in future experiments.



5 Related Work

Our approach builds upon earlier Robot Scientist work [2] which used Progol5 [4]
to rediscover ORF-enzyme mappings removed from the AAA pathway . However,
XHAIL overcomes several key limitations of Progol5, including its inability to
reason hypothetically through negation and its inability to infer more than one
clause in response to any given example. For these reasons the logical model
used by Progol5 employs a complex nested list representation of reactions over
a program in which all negations are restricted to built-in predicates and where
most of the code is devoted to procedural issues such as pruning the search
tree, avoidance of cyclic computations, and efficient sorting of data structures.
As a result, the earlier model is restricted to learning additional ORF-enzyme
mappings in single gene deletion experiments. By contrast, the XHAIL model
employs a completely declarative representation, adapted from [7] but extended
with support for enzyme-complexes, which imposes no a-priori constraints on
the learning task and can be applied to multiple gene deletion experiments and
can simultaneously add or remove reactions, inhibitions and complexes.

6 Conclusions

This paper presented a logical method for the automatic revision of metabolic
networks through abductive and inductive analysis of experimental data. First
we showed how a nonmonotonic logic programming formalism can be used to
declaratively model metabolic reactions with arbitrary reactants catalysed by
multiple enzymes subject to inhibitory feedbacks. Then, we described how the
XHAIL reasoning system was used to revise a state-of-the-art AAA pathway in
the light of real-world data obtained by an autonomous Robot Scientist. The
results have been tested biologically and have thereby led to improvements in
both or metabolic model and our experimental setup.
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